Spaces:
Paused
Paused
""" | |
DOLPHIN PDF Document AI - Final Version | |
Optimized for HuggingFace Spaces NVIDIA T4 Small deployment | |
""" | |
import gradio as gr | |
import json | |
import markdown | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
from transformers import AutoProcessor, VisionEncoderDecoderModel, Gemma3nForConditionalGeneration, pipeline | |
import torch | |
try: | |
from sentence_transformers import SentenceTransformer | |
import numpy as np | |
from sklearn.metrics.pairwise import cosine_similarity | |
import google.generativeai as genai | |
RAG_DEPENDENCIES_AVAILABLE = True | |
except ImportError as e: | |
print(f"RAG dependencies not available: {e}") | |
print("Please install: pip install sentence-transformers scikit-learn google-generativeai") | |
RAG_DEPENDENCIES_AVAILABLE = False | |
SentenceTransformer = None | |
import os | |
import tempfile | |
import uuid | |
import base64 | |
import io | |
from utils.utils import * | |
from utils.markdown_utils import MarkdownConverter | |
# Math extension is optional for enhanced math rendering | |
MATH_EXTENSION_AVAILABLE = False | |
try: | |
from mdx_math import MathExtension | |
MATH_EXTENSION_AVAILABLE = True | |
except ImportError: | |
pass | |
class DOLPHIN: | |
def __init__(self, model_id_or_path): | |
"""Initialize the Hugging Face model optimized for T4 Small""" | |
self.processor = AutoProcessor.from_pretrained(model_id_or_path) | |
self.model = VisionEncoderDecoderModel.from_pretrained( | |
model_id_or_path, | |
torch_dtype=torch.float16, | |
device_map="auto" if torch.cuda.is_available() else None | |
) | |
self.model.eval() | |
self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
if not torch.cuda.is_available(): | |
self.model = self.model.float() | |
self.tokenizer = self.processor.tokenizer | |
def chat(self, prompt, image): | |
"""Process an image or batch of images with the given prompt(s)""" | |
is_batch = isinstance(image, list) | |
if not is_batch: | |
images = [image] | |
prompts = [prompt] | |
else: | |
images = image | |
prompts = prompt if isinstance(prompt, list) else [prompt] * len(images) | |
batch_inputs = self.processor(images, return_tensors="pt", padding=True) | |
batch_pixel_values = batch_inputs.pixel_values | |
if torch.cuda.is_available(): | |
batch_pixel_values = batch_pixel_values.half().to(self.device) | |
else: | |
batch_pixel_values = batch_pixel_values.to(self.device) | |
prompts = [f"<s>{p} <Answer/>" for p in prompts] | |
batch_prompt_inputs = self.tokenizer( | |
prompts, | |
add_special_tokens=False, | |
return_tensors="pt" | |
) | |
batch_prompt_ids = batch_prompt_inputs.input_ids.to(self.device) | |
batch_attention_mask = batch_prompt_inputs.attention_mask.to(self.device) | |
with torch.no_grad(): | |
outputs = self.model.generate( | |
pixel_values=batch_pixel_values, | |
decoder_input_ids=batch_prompt_ids, | |
decoder_attention_mask=batch_attention_mask, | |
min_length=1, | |
max_length=1024, # Reduced for T4 Small | |
pad_token_id=self.tokenizer.pad_token_id, | |
eos_token_id=self.tokenizer.eos_token_id, | |
use_cache=True, | |
bad_words_ids=[[self.tokenizer.unk_token_id]], | |
return_dict_in_generate=True, | |
do_sample=False, | |
num_beams=1, | |
repetition_penalty=1.1, | |
temperature=1.0 | |
) | |
sequences = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False) | |
results = [] | |
for i, sequence in enumerate(sequences): | |
cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip() | |
results.append(cleaned) | |
if not is_batch: | |
return results[0] | |
return results | |
def convert_pdf_to_images_gradio(pdf_file): | |
"""Convert uploaded PDF file to list of PIL Images""" | |
try: | |
import pymupdf | |
if isinstance(pdf_file, str): | |
pdf_document = pymupdf.open(pdf_file) | |
else: | |
pdf_bytes = pdf_file.read() | |
pdf_document = pymupdf.open(stream=pdf_bytes, filetype="pdf") | |
images = [] | |
for page_num in range(len(pdf_document)): | |
page = pdf_document[page_num] | |
mat = pymupdf.Matrix(2.0, 2.0) | |
pix = page.get_pixmap(matrix=mat) | |
img_data = pix.tobytes("png") | |
pil_image = Image.open(io.BytesIO(img_data)).convert("RGB") | |
images.append(pil_image) | |
pdf_document.close() | |
return images | |
except Exception as e: | |
raise Exception(f"Error converting PDF: {str(e)}") | |
def process_pdf_document(pdf_file, model, progress=gr.Progress()): | |
"""Process uploaded PDF file page by page""" | |
if pdf_file is None: | |
return "No PDF file uploaded", "" | |
try: | |
progress(0.1, desc="Converting PDF to images...") | |
images = convert_pdf_to_images_gradio(pdf_file) | |
if not images: | |
return "Failed to convert PDF to images", "" | |
all_results = [] | |
for page_idx, pil_image in enumerate(images): | |
progress((page_idx + 1) / len(images) * 0.8 + 0.1, | |
desc=f"Processing page {page_idx + 1}/{len(images)}...") | |
layout_output = model.chat("Parse the reading order of this document.", pil_image) | |
padded_image, dims = prepare_image(pil_image) | |
recognition_results = process_elements_optimized( | |
layout_output, | |
padded_image, | |
dims, | |
model, | |
max_batch_size=2 # Smaller batch for T4 Small | |
) | |
try: | |
markdown_converter = MarkdownConverter() | |
markdown_content = markdown_converter.convert(recognition_results) | |
except: | |
markdown_content = generate_fallback_markdown(recognition_results) | |
page_result = { | |
"page_number": page_idx + 1, | |
"markdown": markdown_content | |
} | |
all_results.append(page_result) | |
progress(1.0, desc="Processing complete!") | |
combined_markdown = "\n\n---\n\n".join([ | |
f"# Page {result['page_number']}\n\n{result['markdown']}" | |
for result in all_results | |
]) | |
return combined_markdown, "processing_complete" | |
except Exception as e: | |
error_msg = f"Error processing PDF: {str(e)}" | |
return error_msg, "error" | |
def process_elements_optimized(layout_results, padded_image, dims, model, max_batch_size=2): | |
"""Optimized element processing for T4 Small""" | |
layout_results = parse_layout_string(layout_results) | |
text_elements = [] | |
table_elements = [] | |
figure_results = [] | |
previous_box = None | |
reading_order = 0 | |
for bbox, label in layout_results: | |
try: | |
x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates( | |
bbox, padded_image, dims, previous_box | |
) | |
cropped = padded_image[y1:y2, x1:x2] | |
if cropped.size > 0 and cropped.shape[0] > 3 and cropped.shape[1] > 3: | |
if label == "fig": | |
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB)) | |
pil_crop = crop_margin(pil_crop) | |
buffered = io.BytesIO() | |
pil_crop.save(buffered, format="PNG") | |
img_base64 = base64.b64encode(buffered.getvalue()).decode() | |
data_uri = f"data:image/png;base64,{img_base64}" | |
figure_results.append({ | |
"label": label, | |
"text": f"", | |
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2], | |
"reading_order": reading_order, | |
}) | |
else: | |
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB)) | |
element_info = { | |
"crop": pil_crop, | |
"label": label, | |
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2], | |
"reading_order": reading_order, | |
} | |
if label == "tab": | |
table_elements.append(element_info) | |
else: | |
text_elements.append(element_info) | |
reading_order += 1 | |
except Exception as e: | |
print(f"Error processing element {label}: {str(e)}") | |
continue | |
recognition_results = figure_results.copy() | |
if text_elements: | |
text_results = process_element_batch_optimized( | |
text_elements, model, "Read text in the image.", max_batch_size | |
) | |
recognition_results.extend(text_results) | |
if table_elements: | |
table_results = process_element_batch_optimized( | |
table_elements, model, "Parse the table in the image.", max_batch_size | |
) | |
recognition_results.extend(table_results) | |
recognition_results.sort(key=lambda x: x.get("reading_order", 0)) | |
return recognition_results | |
def process_element_batch_optimized(elements, model, prompt, max_batch_size=2): | |
"""Process elements in small batches for T4 Small""" | |
results = [] | |
batch_size = min(len(elements), max_batch_size) | |
for i in range(0, len(elements), batch_size): | |
batch_elements = elements[i:i+batch_size] | |
crops_list = [elem["crop"] for elem in batch_elements] | |
prompts_list = [prompt] * len(crops_list) | |
batch_results = model.chat(prompts_list, crops_list) | |
for j, result in enumerate(batch_results): | |
elem = batch_elements[j] | |
results.append({ | |
"label": elem["label"], | |
"bbox": elem["bbox"], | |
"text": result.strip(), | |
"reading_order": elem["reading_order"], | |
}) | |
del crops_list, batch_elements | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
return results | |
def generate_fallback_markdown(recognition_results): | |
"""Generate basic markdown if converter fails""" | |
markdown_content = "" | |
for element in recognition_results: | |
if element["label"] == "tab": | |
markdown_content += f"\n\n{element['text']}\n\n" | |
elif element["label"] in ["para", "title", "sec", "sub_sec"]: | |
markdown_content += f"{element['text']}\n\n" | |
elif element["label"] == "fig": | |
markdown_content += f"{element['text']}\n\n" | |
return markdown_content | |
# Initialize model | |
model_path = "./hf_model" | |
if not os.path.exists(model_path): | |
model_path = "ByteDance/DOLPHIN" | |
# Model paths and configuration | |
model_path = "./hf_model" if os.path.exists("./hf_model") else "ByteDance/DOLPHIN" | |
hf_token = os.getenv('HF_TOKEN') | |
# Don't load models initially - load them on demand | |
model_status = "β Models ready (Dynamic loading)" | |
# Initialize embedding model and Gemini API | |
if RAG_DEPENDENCIES_AVAILABLE: | |
try: | |
print("Loading embedding model for RAG...") | |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2', device='cpu') | |
print("β Embedding model loaded successfully (CPU)") | |
# Initialize Gemini API | |
gemini_api_key = os.getenv('GEMINI_API_KEY') | |
if gemini_api_key: | |
genai.configure(api_key=gemini_api_key) | |
gemini_model = genai.GenerativeModel('gemma-3n-e4b-it') | |
print("β Gemini API configured successfully") | |
else: | |
print("β GEMINI_API_KEY not found in environment") | |
gemini_model = None | |
except Exception as e: | |
print(f"β Error loading models: {e}") | |
import traceback | |
traceback.print_exc() | |
embedding_model = None | |
gemini_model = None | |
else: | |
print("β RAG dependencies not available") | |
embedding_model = None | |
gemini_model = None | |
# Model management functions | |
def load_dolphin_model(): | |
"""Load DOLPHIN model for PDF processing""" | |
global dolphin_model, current_model | |
if current_model == "dolphin": | |
return dolphin_model | |
# No need to unload chatbot model (using API now) | |
try: | |
print("Loading DOLPHIN model...") | |
dolphin_model = DOLPHIN(model_path) | |
current_model = "dolphin" | |
print(f"β DOLPHIN model loaded (Device: {dolphin_model.device})") | |
return dolphin_model | |
except Exception as e: | |
print(f"β Error loading DOLPHIN model: {e}") | |
return None | |
def unload_dolphin_model(): | |
"""Unload DOLPHIN model to free memory""" | |
global dolphin_model, current_model | |
if dolphin_model is not None: | |
print("Unloading DOLPHIN model...") | |
del dolphin_model | |
dolphin_model = None | |
if current_model == "dolphin": | |
current_model = None | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
print("β DOLPHIN model unloaded") | |
def initialize_gemini_model(): | |
"""Initialize Gemini API model""" | |
global gemini_model | |
if gemini_model is not None: | |
return gemini_model | |
try: | |
gemini_api_key = os.getenv('GEMINI_API_KEY') | |
if not gemini_api_key: | |
print("β GEMINI_API_KEY not found in environment") | |
return None | |
print("Initializing Gemini API...") | |
genai.configure(api_key=gemini_api_key) | |
gemini_model = genai.GenerativeModel('gemma-3n-e4b-it') | |
print("β Gemini API model ready") | |
return gemini_model | |
except Exception as e: | |
print(f"β Error initializing Gemini model: {e}") | |
import traceback | |
traceback.print_exc() | |
return None | |
# Global state for managing tabs | |
processed_markdown = "" | |
show_results_tab = False | |
document_chunks = [] | |
document_embeddings = None | |
# Global model state | |
dolphin_model = None | |
gemini_model = None | |
current_model = None # Track which model is currently loaded | |
def chunk_document(text, chunk_size=1024, overlap=100): | |
"""Split document into overlapping chunks for RAG - optimized for API quota""" | |
words = text.split() | |
chunks = [] | |
for i in range(0, len(words), chunk_size - overlap): | |
chunk = ' '.join(words[i:i + chunk_size]) | |
if chunk.strip(): | |
chunks.append(chunk) | |
return chunks | |
def create_embeddings(chunks): | |
"""Create embeddings for document chunks""" | |
if embedding_model is None: | |
return None | |
try: | |
# Process in smaller batches on CPU | |
batch_size = 32 | |
embeddings = [] | |
for i in range(0, len(chunks), batch_size): | |
batch = chunks[i:i + batch_size] | |
batch_embeddings = embedding_model.encode(batch, show_progress_bar=False) | |
embeddings.extend(batch_embeddings) | |
return np.array(embeddings) | |
except Exception as e: | |
print(f"Error creating embeddings: {e}") | |
return None | |
def retrieve_relevant_chunks(question, chunks, embeddings, top_k=3): | |
"""Retrieve most relevant chunks for a question""" | |
if embedding_model is None or embeddings is None: | |
return chunks[:3] # Fallback to first 3 chunks | |
try: | |
question_embedding = embedding_model.encode([question], show_progress_bar=False) | |
similarities = cosine_similarity(question_embedding, embeddings)[0] | |
# Get top-k most similar chunks | |
top_indices = np.argsort(similarities)[-top_k:][::-1] | |
relevant_chunks = [chunks[i] for i in top_indices] | |
return relevant_chunks | |
except Exception as e: | |
print(f"Error retrieving chunks: {e}") | |
return chunks[:3] # Fallback | |
def process_uploaded_pdf(pdf_file, progress=gr.Progress()): | |
"""Main processing function for uploaded PDF""" | |
global processed_markdown, show_results_tab, document_chunks, document_embeddings | |
if pdf_file is None: | |
return "β No PDF uploaded", gr.Tabs(visible=False) | |
try: | |
# Load DOLPHIN model for PDF processing | |
progress(0.1, desc="Loading DOLPHIN model...") | |
dolphin = load_dolphin_model() | |
if dolphin is None: | |
return "β Failed to load DOLPHIN model", gr.Tabs(visible=False) | |
# Process PDF | |
progress(0.2, desc="Processing PDF...") | |
combined_markdown, status = process_pdf_document(pdf_file, dolphin, progress) | |
if status == "processing_complete": | |
processed_markdown = combined_markdown | |
# Create chunks and embeddings for RAG | |
progress(0.9, desc="Creating document chunks for RAG...") | |
document_chunks = chunk_document(processed_markdown) | |
document_embeddings = create_embeddings(document_chunks) | |
print(f"Created {len(document_chunks)} chunks") | |
# Keep DOLPHIN model loaded for GPU usage | |
progress(0.95, desc="Preparing chatbot...") | |
show_results_tab = True | |
progress(1.0, desc="PDF processed successfully!") | |
return "β PDF processed successfully! Chatbot is ready in the Chat tab.", gr.Tabs(visible=True) | |
else: | |
show_results_tab = False | |
return combined_markdown, gr.Tabs(visible=False) | |
except Exception as e: | |
show_results_tab = False | |
error_msg = f"β Error processing PDF: {str(e)}" | |
return error_msg, gr.Tabs(visible=False) | |
def get_processed_markdown(): | |
"""Return the processed markdown content""" | |
global processed_markdown | |
return processed_markdown if processed_markdown else "No document processed yet." | |
def clear_all(): | |
"""Clear all data and hide results tab""" | |
global processed_markdown, show_results_tab, document_chunks, document_embeddings | |
processed_markdown = "" | |
show_results_tab = False | |
document_chunks = [] | |
document_embeddings = None | |
# Unload DOLPHIN model | |
unload_dolphin_model() | |
return None, "", gr.Tabs(visible=False) | |
# Create Gradio interface | |
with gr.Blocks( | |
title="DOLPHIN PDF AI", | |
theme=gr.themes.Soft(), | |
css=""" | |
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap'); | |
* { | |
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif !important; | |
} | |
.main-container { | |
max-width: 1000px; | |
margin: 0 auto; | |
} | |
.upload-container { | |
text-align: center; | |
padding: 40px 20px; | |
border: 2px dashed #e0e0e0; | |
border-radius: 15px; | |
margin: 20px 0; | |
} | |
.upload-button { | |
font-size: 18px !important; | |
padding: 15px 30px !important; | |
margin: 20px 0 !important; | |
font-weight: 600 !important; | |
} | |
.status-message { | |
text-align: center; | |
padding: 15px; | |
margin: 10px 0; | |
border-radius: 8px; | |
font-weight: 500; | |
} | |
.chatbot-container { | |
max-height: 600px; | |
} | |
h1, h2, h3 { | |
font-weight: 700 !important; | |
} | |
#progress-container { | |
margin: 10px 0; | |
min-height: 20px; | |
} | |
""" | |
) as demo: | |
with gr.Tabs() as main_tabs: | |
# Home Tab | |
with gr.TabItem("π Home", id="home"): | |
embedding_status = "β RAG ready" if embedding_model else "β RAG not loaded" | |
gemini_status = "β Gemini API ready" if gemini_model else "β Gemini API not configured" | |
current_status = f"Currently loaded: {current_model or 'None'}" | |
gr.Markdown( | |
"# Scholar Express\n" | |
"### Upload a research paper to get a web-friendly version and an AI chatbot powered by Gemini API. DOLPHIN model runs on GPU for optimal performance.\n" | |
f"**System:** {model_status}\n" | |
f"**RAG System:** {embedding_status}\n" | |
f"**Gemini API:** {gemini_status}\n" | |
f"**Status:** {current_status}" | |
) | |
with gr.Column(elem_classes="upload-container"): | |
gr.Markdown("## π Upload Your PDF Document") | |
pdf_input = gr.File( | |
file_types=[".pdf"], | |
label="", | |
height=150, | |
elem_id="pdf_upload" | |
) | |
process_btn = gr.Button( | |
"π Process PDF", | |
variant="primary", | |
size="lg", | |
elem_classes="upload-button" | |
) | |
clear_btn = gr.Button( | |
"ποΈ Clear", | |
variant="secondary" | |
) | |
# Dedicated progress space | |
progress_space = gr.HTML( | |
value="", | |
visible=False, | |
elem_id="progress-container" | |
) | |
# Status output (hidden during processing) | |
status_output = gr.Markdown( | |
"", | |
elem_classes="status-message" | |
) | |
# Results Tab (initially hidden) | |
with gr.TabItem("π Document", id="results", visible=False) as results_tab: | |
gr.Markdown("## Processed Document") | |
markdown_display = gr.Markdown( | |
value="", | |
latex_delimiters=[ | |
{"left": "$$", "right": "$$", "display": True}, | |
{"left": "$", "right": "$", "display": False} | |
], | |
height=700 | |
) | |
# Chatbot Tab (initially hidden) | |
with gr.TabItem("π¬ Chat", id="chat", visible=False) as chat_tab: | |
gr.Markdown("## Ask Questions About Your Document") | |
chatbot = gr.Chatbot( | |
value=[], | |
height=500, | |
elem_classes="chatbot-container", | |
placeholder="Your conversation will appear here once you process a document..." | |
) | |
with gr.Row(): | |
msg_input = gr.Textbox( | |
placeholder="Ask a question about the processed document...", | |
scale=4, | |
container=False | |
) | |
send_btn = gr.Button("Send", variant="primary", scale=1) | |
gr.Markdown( | |
"*Ask questions about your processed document. The AI uses RAG (Retrieval-Augmented Generation) with Gemini API to find relevant sections and provide accurate answers.*", | |
elem_id="chat-notice" | |
) | |
# Event handlers | |
process_btn.click( | |
fn=process_uploaded_pdf, | |
inputs=[pdf_input], | |
outputs=[status_output, results_tab], | |
show_progress=True | |
).then( | |
fn=get_processed_markdown, | |
outputs=[markdown_display] | |
).then( | |
fn=lambda: gr.TabItem(visible=True), | |
outputs=[chat_tab] | |
) | |
clear_btn.click( | |
fn=clear_all, | |
outputs=[pdf_input, status_output, results_tab] | |
).then( | |
fn=lambda: gr.HTML(visible=False), | |
outputs=[progress_space] | |
).then( | |
fn=lambda: gr.TabItem(visible=False), | |
outputs=[chat_tab] | |
) | |
# Chatbot functionality with Gemini API | |
def chatbot_response(message, history): | |
if not message.strip(): | |
return history | |
if not processed_markdown: | |
return history + [[message, "β Please process a PDF document first before asking questions."]] | |
try: | |
# Initialize Gemini model | |
model = initialize_gemini_model() | |
if model is None: | |
return history + [[message, "β Failed to initialize Gemini model. Please check your GEMINI_API_KEY."]] | |
# Use RAG to get relevant chunks from markdown (balanced for performance vs quota) | |
if document_chunks and len(document_chunks) > 0: | |
relevant_chunks = retrieve_relevant_chunks(message, document_chunks, document_embeddings, top_k=3) | |
context = "\n\n".join(relevant_chunks) | |
# Smart truncation: aim for ~4000 chars (good context while staying under quota) | |
if len(context) > 4000: | |
# Try to cut at sentence boundaries | |
sentences = context[:4000].split('.') | |
context = '.'.join(sentences[:-1]) + '...' if len(sentences) > 1 else context[:4000] + '...' | |
else: | |
# Fallback to truncated document if RAG fails | |
context = processed_markdown[:4000] + "..." if len(processed_markdown) > 4000 else processed_markdown | |
# Create prompt for Gemini | |
prompt = f"""You are a helpful assistant that answers questions about documents. Use the provided context to answer questions accurately and concisely. | |
Context from the document: | |
{context} | |
Question: {message} | |
Please provide a clear and helpful answer based on the context provided.""" | |
# Generate response using Gemini API with retry logic | |
import time | |
max_retries = 2 | |
for attempt in range(max_retries): | |
try: | |
response = model.generate_content(prompt) | |
response_text = response.text if hasattr(response, 'text') else str(response) | |
return history + [[message, response_text]] | |
except Exception as api_error: | |
if "429" in str(api_error) and attempt < max_retries - 1: | |
# Rate limit hit, wait and retry | |
time.sleep(3) | |
continue | |
else: | |
# Other error or final attempt failed | |
if "429" in str(api_error): | |
return history + [[message, "β API quota exceeded. Please wait a moment and try again, or check your Gemini API billing."]] | |
else: | |
raise api_error | |
except Exception as e: | |
error_msg = f"β Error generating response: {str(e)}" | |
print(f"Full error: {e}") | |
import traceback | |
traceback.print_exc() | |
return history + [[message, error_msg]] | |
send_btn.click( | |
fn=chatbot_response, | |
inputs=[msg_input, chatbot], | |
outputs=[chatbot] | |
).then( | |
lambda: "", | |
outputs=[msg_input] | |
) | |
# Also allow Enter key to send message | |
msg_input.submit( | |
fn=chatbot_response, | |
inputs=[msg_input, chatbot], | |
outputs=[chatbot] | |
).then( | |
lambda: "", | |
outputs=[msg_input] | |
) | |
if __name__ == "__main__": | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=False, | |
show_error=True, | |
max_threads=1, # Single thread for T4 Small | |
inbrowser=False, | |
quiet=True | |
) |