Spaces:
Sleeping
Sleeping
import os | |
import shutil | |
import subprocess | |
import gradio as gr | |
# Use /tmp in Spaces, or ./data locally if you set LOCAL_TRAIN=1 | |
LOCAL = os.environ.get("LOCAL_TRAIN", "").lower() in ("1","true") | |
DATA_DIR = os.path.join(os.getcwd(), "data") if LOCAL else "/tmp/data" | |
os.makedirs(DATA_DIR, exist_ok=True) | |
def prepare_dataset(files): | |
# wipe and copy uploaded files | |
for f in os.listdir(DATA_DIR): | |
os.remove(os.path.join(DATA_DIR, f)) | |
for file in files: | |
dst = os.path.join(DATA_DIR, os.path.basename(file.name)) | |
shutil.copyfile(file.name, dst) | |
return f"β {len(files)} files uploaded to {DATA_DIR}" | |
def start_training(base_model, trigger_word, steps, r, alpha): | |
# pass args via environment to train.py | |
env = os.environ.copy() | |
env.update({ | |
"BASE_MODEL": base_model, | |
"TRIGGER_WORD": trigger_word, | |
"NUM_STEPS": str(steps), | |
"LORA_R": str(r), | |
"LORA_ALPHA": str(alpha), | |
"LOCAL_TRAIN": os.environ.get("LOCAL_TRAIN","") | |
}) | |
# run training and capture all output | |
proc = subprocess.run( | |
["python3","train.py"], | |
capture_output=True, text=True, env=env | |
) | |
return proc.stdout + ("\n" + proc.stderr if proc.stderr else "") | |
model_choices = [ | |
"HiDream-ai/HiDream-I1-Dev", | |
"runwayml/stable-diffusion-v1-5", | |
"stabilityai/stable-diffusion-2-1" | |
] | |
with gr.Blocks() as demo: | |
gr.Markdown("# ποΈ HiDream LoRA Trainer") | |
gr.Markdown(f"Running in **{'local' if LOCAL else 'Spaces'}** mode; data dir: `{DATA_DIR}`") | |
with gr.Row(): | |
uploader = gr.File(file_types=["image",".txt"], file_count="multiple", label="Upload images + texts") | |
up_btn = gr.Button("π Upload") | |
up_status = gr.Textbox(label="Upload status") | |
mdl = gr.Dropdown(model_choices, value=model_choices[0], label="Base model") | |
tw = gr.Textbox(label="Trigger word", placeholder="e.g. rami-style") | |
st = gr.Slider(10,500,value=100,step=10,label="Training steps") | |
r_v = gr.Slider(4,128,value=16,step=4,label="LoRA rank (r)") | |
a_v = gr.Slider(4,128,value=16,step=4,label="LoRA alpha") | |
tr_btn = gr.Button("π Train") | |
log_tb = gr.Textbox(label="Training log", lines=20) | |
up_btn.click(prepare_dataset, inputs=uploader, outputs=up_status) | |
tr_btn.click(start_training, inputs=[mdl,tw,st,r_v,a_v], outputs=log_tb) | |
demo.launch(server_name="0.0.0.0", server_port=7860) | |