Spaces:
Sleeping
Sleeping
from pathlib import Path | |
from langchain.chains import RetrievalQA | |
from transformers import pipeline, AutoTokenizer | |
from langchain_community.vectorstores import Chroma | |
from langchain_community.document_loaders import PyMuPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFacePipeline | |
# Load all PDFs from the data folder | |
def load_documents(pdf_dir): | |
docs = [] | |
for pdf_file in Path(pdf_dir).glob("*.pdf"): | |
loader = PyMuPDFLoader(str(pdf_file)) | |
docs.extend(loader.load()) | |
return docs | |
def load_rag_chain(): | |
# Make sure the data directory exists | |
pdf_dir = Path("data") | |
pdf_dir.mkdir(parents=True, exist_ok=True) | |
# Load and split PDFs | |
raw_docs = load_documents(pdf_dir) | |
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
pages = splitter.split_documents(raw_docs) | |
# Load sentence transformer for embeddings | |
embeddings = HuggingFaceEmbeddings( | |
model_name="sentence-transformers/all-MiniLM-L6-v2", | |
model_kwargs={"device": "cpu"}, | |
) | |
# Vector store | |
vectordb_dir = "chroma_db" | |
vectordb = Chroma.from_documents(pages, embeddings, persist_directory=vectordb_dir) | |
retriever = vectordb.as_retriever(search_type="mmr", search_kwargs={"k": 5}) | |
# Load a completely free and CPU-compatible model | |
hf_pipeline = pipeline( | |
"text2text-generation", | |
model="google/flan-t5-base", | |
tokenizer=AutoTokenizer.from_pretrained("google/flan-t5-base"), | |
max_new_tokens=512, | |
temperature=0.3, | |
device=-1 # -1 means CPU | |
) | |
llm = HuggingFacePipeline(pipeline=hf_pipeline) | |
# Build RetrievalQA chain | |
qa_chain = RetrievalQA.from_llm(llm=llm, retriever=retriever) | |
return qa_chain | |