File size: 3,399 Bytes
1051bf9
2d8c319
8550dc5
91b268b
2e62dd1
91b268b
 
 
0e5b4a4
2e62dd1
569e45d
2e62dd1
2d8c319
0e5b4a4
2e62dd1
8550dc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5b4a4
2e62dd1
 
8550dc5
2e62dd1
8550dc5
f8c1ecf
0e5b4a4
2e62dd1
f8c1ecf
8550dc5
f8c1ecf
 
 
 
 
8550dc5
 
 
 
 
f8c1ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
8550dc5
f8c1ecf
8550dc5
0e5b4a4
f8c1ecf
1051bf9
f8c1ecf
8550dc5
 
 
2e62dd1
91b268b
f8c1ecf
8550dc5
 
2e62dd1
8550dc5
0e5b4a4
8550dc5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import gradio as gr
import os
import torch
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from transformers import AutoModelForCausalLM, AutoTokenizer

# Configuration
DOCS_DIR = "business_docs"
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
MODEL_NAME = "microsoft/phi-2"

def initialize_system():
    # Document verification
    if not os.path.exists(DOCS_DIR):
        raise FileNotFoundError(f"Missing {DOCS_DIR} folder")
    
    pdf_files = [os.path.join(DOCS_DIR, f) 
                for f in os.listdir(DOCS_DIR) 
                if f.endswith(".pdf")]
    
    if not pdf_files:
        raise ValueError(f"No PDFs found in {DOCS_DIR}")

    # Document processing
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=800,
        chunk_overlap=100
    )
    
    texts = []
    for pdf in pdf_files:
        loader = PyPDFLoader(pdf)
        pages = loader.load_and_split(text_splitter)
        texts.extend(pages)

    # Create embeddings
    embeddings = HuggingFaceEmbeddings(
        model_name=EMBEDDING_MODEL,
        model_kwargs={'device': 'cpu'}
    )
    
    # Vector store
    vector_store = FAISS.from_documents(texts, embeddings)

    # Model loading
    tokenizer = AutoTokenizer.from_pretrained(
        MODEL_NAME,
        trust_remote_code=True,
        padding_side="left"
    )
    
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_NAME,
        trust_remote_code=True,
        device_map="auto",
        load_in_4bit=True,
        torch_dtype=torch.float16
    )

    return vector_store, model, tokenizer

try:
    vector_store, model, tokenizer = initialize_system()
    print("System initialized successfully ✅")
except Exception as e:
    print(f"Initialization failed ❌: {str(e)}")
    raise

def generate_response(query):
    try:
        # Context retrieval
        docs = vector_store.similarity_search(query, k=2)
        context = "\n".join([d.page_content for d in docs])
        
        # Phi-2 optimized prompt
        prompt = f"""<|system|>
        You are a customer service bot. Answer only using:
        {context}
        - Max 3 sentences
        - If unsure: "I'll check with the team"
        </s>
        <|user|>
        {query}</s>
        <|assistant|>"""
        
        inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
        outputs = model.generate(
            **inputs,
            max_new_tokens=200,
            temperature=0.1,
            pad_token_id=tokenizer.eos_token_id
        )
        
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        return response.split("<|assistant|>")[-1].strip()
    
    except Exception as e:
        return "Please try again later."

# Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# Customer Support Chatbot")
    chatbot = gr.Chatbot()
    msg = gr.Textbox(label="Ask about our services")
    clear = gr.ClearButton([msg, chatbot])
    
    def respond(message, history):
        response = generate_response(message)
        history.append((message, response))
        return "", history
    
    msg.submit(respond, [msg, chatbot], [msg, chatbot])

demo.launch()