File size: 28,152 Bytes
cdde792
 
 
 
 
 
 
 
 
 
 
 
 
 
fb238c8
 
cdde792
 
fb238c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdde792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb238c8
 
 
 
 
cdde792
 
 
 
 
 
 
 
 
 
 
 
 
 
fb238c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdde792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb238c8
 
 
cdde792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
#!/usr/bin/env python3
"""
Streamlit app for interactive complexity metrics visualization.
"""

import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import warnings
import datasets
import logging
warnings.filterwarnings('ignore')

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Constants
PLOT_PALETTE = {
    "jailbreak": "#D000D8",  # Purple
    "benign": "#008393",     # Cyan
    "control": "#EF0000",    # Red
}

# Utility functions
def load_and_prepare_dataset(dataset_config):
    """Load the risky conversations dataset and prepare it for analysis."""
    logger.info("Loading dataset...")
    
    dataset_name = dataset_config["dataset_name"]
    logger.info(f"Loading dataset: {dataset_name}")
    
    # Load the dataset
    dataset = datasets.load_dataset(dataset_name, split="train")
    logger.info(f"Dataset loaded with {len(dataset)} conversations")
    
    # Convert to pandas
    pandas_dataset = dataset.to_pandas()
    
    # Explode the conversation column
    pandas_dataset_exploded = pandas_dataset.explode("conversation")
    pandas_dataset_exploded = pandas_dataset_exploded.reset_index(drop=True)
    
    # Normalize conversation data
    conversations_unfolded = pd.json_normalize(
        pandas_dataset_exploded["conversation"],
    )
    conversations_unfolded = conversations_unfolded.add_prefix("turn.")
    
    # Ensure there's a 'conversation_metrics' column, even if empty
    if "conversation_metrics" not in pandas_dataset_exploded.columns:
        pandas_dataset_exploded["conversation_metrics"] = [{}] * len(
            pandas_dataset_exploded
        )
    
    # Normalize conversation metrics
    conversations_metrics_unfolded = pd.json_normalize(
        pandas_dataset_exploded["conversation_metrics"]
    )
    conversations_metrics_unfolded = conversations_metrics_unfolded.add_prefix(
        "conversation_metrics."
    )
    
    # Concatenate all dataframes
    pandas_dataset_exploded = pd.concat(
        [
            pandas_dataset_exploded.drop(
                columns=["conversation", "conversation_metrics"]
            ),
            conversations_unfolded,
            conversations_metrics_unfolded,
        ],
        axis=1,
    )
    
    logger.info(f"Dataset prepared with {len(pandas_dataset_exploded)} turns")
    return pandas_dataset, pandas_dataset_exploded

def get_available_turn_metrics(dataset_exploded):
    """Dynamically discover all available turn metrics from the dataset."""
    # Find all columns that contain turn metrics
    turn_metric_columns = [
        col for col in dataset_exploded.columns if col.startswith("turn.turn_metrics.")
    ]
    
    # Extract the metric names by removing the prefix
    metrics = [col.replace("turn.turn_metrics.", "") for col in turn_metric_columns]
    
    # Sort metrics for consistent ordering
    metrics = sorted(metrics)
    
    logger.info(f"Discovered {len(metrics)} available turn metrics")
    return metrics

def get_human_friendly_metric_name(metric_name):
    """Convert a metric name to a human-friendly display name."""
    # Mapping of metric names to human-friendly display names
    metric_display_names = {
        # Length metrics
        "conversational_length_tokens": "Length in Tokens",
        "conversational_length_words": "Length in Words", 
        "conversational_length_bytes": "Length in Bytes",
        
        # Readability metrics
        "readability_flesch_score": "Flesch Reading Ease",
        "readability_standard_score": "Reading Grade Level",
        
        # Compression metrics
        "lzw_compression": "LZW Compression Ratio",
        
        # Language model metrics
        "ll_mean_logprobs": "Mean Log Probability",
        "ll_max_logprobs": "Maximum Log Probability",
        "ll_min_logprobs": "Minimum Log Probability",
        "rll_mean_logprobs": "Reverse Mean Log Probability",
        "rll_max_logprobs": "Reverse Maximum Log Probability",
        "rll_min_logprobs": "Reverse Minimum Log Probability",
        
        # Lexical diversity
        "type_token_ratio": "Type-Token Ratio",
        
        # Language distribution
        "zipf_score": "Zipf Distribution Score",
        
        # Evaluation metrics
        "rubric_evaluation.Stealth": "Stealth Score",
        
        # Working memory metrics
        "wm_total_entity_references": "Total Entity References",
        "wm_unique_entities_count": "Unique Entities Count",
        "wm_named_entity_mentions": "Named Entity Mentions",
        "wm_concept_noun_mentions": "Concept Noun Mentions", 
        "wm_pronoun_references": "Pronoun References",
        "wm_entity_density_per_word": "Entity Density per Word",
        "wm_entity_density_per_100_words": "Entity Density per 100 Words",
        "wm_entity_density_per_100_chars": "Entity Density per 100 Characters",
        "wm_entity_diversity_ratio": "Entity Diversity Ratio",
        "wm_entity_repetition_ratio": "Entity Repetition Ratio",
        "wm_cognitive_load_score": "Cognitive Load Score",
        "wm_high_cognitive_load": "High Cognitive Load",
        
        # Discourse coherence metrics
        "discourse_coherence_to_next_user": "Coherence to Next User Turn",
        "discourse_coherence_to_next_turn": "Coherence to Next Turn",
        "discourse_mean_user_coherence": "Mean User Coherence",
        "discourse_user_coherence_variance": "User Coherence Variance",
        "discourse_user_topic_drift": "User Topic Drift",
        "discourse_user_entity_continuity": "User Entity Continuity",
        "discourse_num_user_turns": "Number of User Turns",
        
        # Tokens per byte
        "tokens_per_byte": "Tokens per Byte",
    }
    
    # Check exact match first
    if metric_name in metric_display_names:
        return metric_display_names[metric_name]
    
    # Handle conversation-level aggregations
    for suffix in ["_conversation_mean", "_conversation_min", "_conversation_max", "_conversation_std", "_conversation_count"]:
        if metric_name.endswith(suffix):
            base_metric = metric_name[:-len(suffix)]
            if base_metric in metric_display_names:
                agg_type = suffix.split("_")[-1].title()
                return f"{metric_display_names[base_metric]} ({agg_type})"
    
    # Handle turn-level metrics with "turn.turn_metrics." prefix
    if metric_name.startswith("turn.turn_metrics."):
        base_metric = metric_name[len("turn.turn_metrics."):]
        if base_metric in metric_display_names:
            return metric_display_names[base_metric]
    
    # Fallback: convert underscores to spaces and title case
    clean_name = metric_name
    for prefix in ["turn.turn_metrics.", "conversation_metrics.", "turn_metrics."]:
        if clean_name.startswith(prefix):
            clean_name = clean_name[len(prefix):]
            break
    
    # Convert to human-readable format
    clean_name = clean_name.replace("_", " ").title()
    return clean_name

# Setup page config
st.set_page_config(
    page_title="Complexity Metrics Explorer",
    page_icon="πŸ“Š",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Cache data loading
@st.cache_data
def load_data(dataset_name):
    """Load and cache the dataset"""
    df, df_exploded = load_and_prepare_dataset({
        'dataset_name': dataset_name
    })
    return df, df_exploded

@st.cache_data
def get_metrics(df_exploded):
    """Get available metrics from the dataset"""
    return get_available_turn_metrics(df_exploded)

def main():
    st.title("πŸ” Complexity Metrics Explorer")
    st.markdown("Interactive visualization of conversation complexity metrics across different dataset types.")
    
    # Dataset selection
    st.sidebar.header("πŸ—‚οΈ Dataset Selection")
    
    # Available datasets
    available_datasets = [
        "jailbreaks_dataset_with_results_reduced",
        "jailbreaks_dataset_with_results",
        "jailbreaks_dataset_with_results_filtered_successful_jailbreak",
        "Custom..."
    ]
    
    selected_option = st.sidebar.selectbox(
        "Select Dataset",
        options=available_datasets,
        index=0,  # Default to reduced dataset
        help="Choose which dataset to analyze"
    )
    
    # Handle custom dataset input
    if selected_option == "Custom...":
        selected_dataset = st.sidebar.text_input(
            "Custom Dataset Name",
            value="jailbreaks_dataset_with_results_reduced",
            help="Enter the full dataset name (e.g., 'jailbreaks_dataset_with_results_reduced')"
        )
        if not selected_dataset.strip():
            st.sidebar.warning("Please enter a dataset name")
            st.stop()
    else:
        selected_dataset = selected_option
    
    # Add refresh button
    if st.sidebar.button("πŸ”„ Refresh Data", help="Clear cache and reload dataset"):
        st.cache_data.clear()
        st.rerun()
    
    # Load data
    with st.spinner(f"Loading dataset: {selected_dataset}..."):
        try:
            df, df_exploded = load_data(selected_dataset)
            available_metrics = get_metrics(df_exploded)
            
            # Display dataset info
            col1, col2, col3, col4 = st.columns(4)
            with col1:
                st.metric("Dataset", selected_dataset.split('_')[-1].title())
            with col2:
                st.metric("Conversations", f"{len(df):,}")
            with col3:
                st.metric("Turns", f"{len(df_exploded):,}")
            with col4:
                st.metric("Metrics", len(available_metrics))
                
            data_loaded = True
        except Exception as e:
            st.error(f"Error loading dataset: {e}")
            st.info("Please check if the dataset exists and is accessible.")
            st.info("πŸ’‘ Try using one of the predefined dataset options instead of custom input.")
            data_loaded = False
    
    if not data_loaded:
        st.stop()
    
    # Check if we have data after filtering
    if len(filtered_df_exploded) == 0:
        st.error("No data available with current filters. Please adjust your selection.")
        st.stop()
    
    # Sidebar controls
    st.sidebar.header("πŸŽ›οΈ Controls")
    
    # Dataset type filter
    dataset_types = df['type'].unique()
    selected_types = st.sidebar.multiselect(
        "Select Dataset Types",
        options=dataset_types,
        default=dataset_types,
        help="Filter by conversation type"
    )
    
    # Role filter
    if 'turn.role' in df_exploded.columns:
        roles = df_exploded['turn.role'].dropna().unique()
        # Assert only user and assistant roles exist
        expected_roles = {'user', 'assistant'}
        actual_roles = set(roles)
        assert actual_roles.issubset(expected_roles), f"Unexpected roles found: {actual_roles - expected_roles}. Expected only 'user' and 'assistant'"
        
        st.sidebar.subheader("πŸ‘₯ Role Filter")
        col1, col2 = st.sidebar.columns(2)
        
        with col1:
            include_user = st.checkbox("User", value=True, help="Include user turns")
        with col2:
            include_assistant = st.checkbox("Assistant", value=True, help="Include assistant turns")
        
        # Build selected roles list
        selected_roles = []
        if include_user and 'user' in roles:
            selected_roles.append('user')
        if include_assistant and 'assistant' in roles:
            selected_roles.append('assistant')
            
        # Show selection info
        if selected_roles:
            st.sidebar.success(f"Including: {', '.join(selected_roles)}")
        else:
            st.sidebar.warning("No roles selected")
    else:
        selected_roles = None
    
    # Metric selection
    st.sidebar.header("πŸ“Š Metrics")
    
    # Dynamic metric categorization based on common patterns
    def categorize_metrics(metrics):
        """Dynamically categorize metrics based on naming patterns"""
        categories = {"All": metrics}  # Always include all metrics
        
        # Common patterns to look for
        patterns = {
            "Length": ['length', 'byte', 'word', 'token', 'char'],
            "Readability": ['readability', 'flesch', 'standard'],
            "Compression": ['lzw', 'compression'],
            "Language Model": ['ll_', 'rll_', 'logprob'],
            "Working Memory": ['wm_'],
            "Discourse": ['discourse'],
            "Evaluation": ['rubric', 'evaluation', 'stealth'],
            "Distribution": ['zipf', 'type_token'],
            "Coherence": ['coherence'],
            "Entity": ['entity', 'entities'],
            "Cognitive": ['cognitive', 'load'],
        }
        
        # Categorize metrics
        for category, keywords in patterns.items():
            matching_metrics = [m for m in metrics if any(keyword in m.lower() for keyword in keywords)]
            if matching_metrics:
                categories[category] = matching_metrics
        
        # Find uncategorized metrics
        categorized = set()
        for cat_metrics in categories.values():
            if cat_metrics != metrics:  # Skip "All" category
                categorized.update(cat_metrics)
        
        uncategorized = [m for m in metrics if m not in categorized]
        if uncategorized:
            categories["Other"] = uncategorized
        
        return categories
    
    metric_categories = categorize_metrics(available_metrics)
    
    # Metric selection interface
    selection_mode = st.sidebar.radio(
        "Selection Mode",
        ["By Category", "Search/Filter", "Select All"],
        help="Choose how to select metrics"
    )
    
    if selection_mode == "By Category":
        selected_category = st.sidebar.selectbox(
            "Metric Category", 
            options=list(metric_categories.keys()),
            help=f"Found {len(metric_categories)} categories"
        )
        
        available_in_category = metric_categories[selected_category]
        default_selection = available_in_category[:5] if len(available_in_category) > 5 else available_in_category
        
        # Add select all button for category
        col1, col2 = st.sidebar.columns(2)
        with col1:
            if st.button("Select All", key="select_all_category"):
                st.session_state.selected_metrics_category = available_in_category
        with col2:
            if st.button("Clear All", key="clear_all_category"):
                st.session_state.selected_metrics_category = []
        
        # Use session state for persistence
        if "selected_metrics_category" not in st.session_state:
            st.session_state.selected_metrics_category = default_selection
        
        selected_metrics = st.sidebar.multiselect(
            f"Select Metrics ({len(available_in_category)} available)",
            options=available_in_category,
            default=st.session_state.selected_metrics_category,
            key="metrics_multiselect_category",
            help="Choose metrics to visualize"
        )
        
    elif selection_mode == "Search/Filter":
        search_term = st.sidebar.text_input(
            "Search Metrics",
            placeholder="Enter keywords to filter metrics...",
            help="Search for metrics containing specific terms"
        )
        
        if search_term:
            filtered_metrics = [m for m in available_metrics if search_term.lower() in m.lower()]
        else:
            filtered_metrics = available_metrics
        
        st.sidebar.write(f"Found {len(filtered_metrics)} metrics")
        
        # Add select all button for search results
        col1, col2 = st.sidebar.columns(2)
        with col1:
            if st.button("Select All", key="select_all_search"):
                st.session_state.selected_metrics_search = filtered_metrics
        with col2:
            if st.button("Clear All", key="clear_all_search"):
                st.session_state.selected_metrics_search = []
        
        # Use session state for persistence
        if "selected_metrics_search" not in st.session_state:
            st.session_state.selected_metrics_search = filtered_metrics[:5] if len(filtered_metrics) > 5 else filtered_metrics[:3]
        
        selected_metrics = st.sidebar.multiselect(
            "Select Metrics",
            options=filtered_metrics,
            default=st.session_state.selected_metrics_search,
            key="metrics_multiselect_search",
            help="Choose metrics to visualize"
        )
        
    else:  # Select All
        # Add select all button for all metrics
        col1, col2 = st.sidebar.columns(2)
        with col1:
            if st.button("Select All", key="select_all_all"):
                st.session_state.selected_metrics_all = available_metrics
        with col2:
            if st.button("Clear All", key="clear_all_all"):
                st.session_state.selected_metrics_all = []
        
        # Use session state for persistence
        if "selected_metrics_all" not in st.session_state:
            st.session_state.selected_metrics_all = available_metrics[:10]  # Limit default to first 10 for performance
        
        selected_metrics = st.sidebar.multiselect(
            f"All Metrics ({len(available_metrics)} total)",
            options=available_metrics,
            default=st.session_state.selected_metrics_all,
            key="metrics_multiselect_all",
            help="All available metrics - be careful with performance for large selections"
        )
    
    # Show selection summary
    if selected_metrics:
        st.sidebar.success(f"Selected {len(selected_metrics)} metrics")
        
        # Performance warning for large selections
        if len(selected_metrics) > 20:
            st.sidebar.warning(f"⚠️ Large selection ({len(selected_metrics)} metrics) may impact performance")
        elif len(selected_metrics) > 50:
            st.sidebar.error(f"🚨 Very large selection ({len(selected_metrics)} metrics) - consider reducing for better performance")
    else:
        st.sidebar.warning("No metrics selected")
    
    # Metric info expander
    with st.sidebar.expander("ℹ️ Metric Information", expanded=False):
        st.write(f"**Total Available Metrics:** {len(available_metrics)}")
        st.write(f"**Categories Found:** {len(metric_categories)}")
        
        if st.checkbox("Show all metric names", key="show_all_metrics"):
            st.write("**All Available Metrics:**")
            for i, metric in enumerate(available_metrics, 1):
                st.write(f"{i}. `{metric}`")
    
    # Filter data
    filtered_df = df[df['type'].isin(selected_types)] if selected_types else df
    filtered_df_exploded = df_exploded[df_exploded['type'].isin(selected_types)] if selected_types else df_exploded
    
    if selected_roles and 'turn.role' in filtered_df_exploded.columns:
        filtered_df_exploded = filtered_df_exploded[filtered_df_exploded['turn.role'].isin(selected_roles)]
    elif selected_roles is not None and len(selected_roles) == 0:
        # If roles exist but none are selected, show empty dataset
        filtered_df_exploded = filtered_df_exploded.iloc[0:0]  # Empty dataframe with same structure
    
    # Main content tabs
    tab1, tab2, tab3, tab4 = st.tabs(["πŸ“Š Distributions", "πŸ”— Correlations", "πŸ“ˆ Comparisons", "🎯 Details"])
    
    with tab1:
        st.header("Distribution Analysis")
        
        if not selected_metrics:
            st.warning("Please select at least one metric to visualize.")
            return
        
        # Create distribution plots
        for metric in selected_metrics:
            full_metric_name = f"turn.turn_metrics.{metric}"
            
            if full_metric_name not in filtered_df_exploded.columns:
                st.warning(f"Metric {metric} not found in dataset")
                continue
            
            st.subheader(f"πŸ“Š {get_human_friendly_metric_name(metric)}")
            
            # Clean the data
            metric_data = filtered_df_exploded[['type', full_metric_name]].copy()
            metric_data = metric_data.dropna()
            
            if len(metric_data) == 0:
                st.warning(f"No data available for {metric}")
                continue
            
            # Create plotly histogram
            fig = px.histogram(
                metric_data, 
                x=full_metric_name, 
                color='type',
                marginal='box',
                title=f"Distribution of {get_human_friendly_metric_name(metric)}",
                color_discrete_map=PLOT_PALETTE if len(selected_types) <= 3 else None,
                opacity=0.7,
                nbins=50
            )
            
            fig.update_layout(
                xaxis_title=get_human_friendly_metric_name(metric),
                yaxis_title="Count",
                height=400
            )
            
            st.plotly_chart(fig, use_container_width=True)
            
            # Summary statistics
            col1, col2 = st.columns(2)
            
            with col1:
                st.write("**Summary Statistics**")
                summary_stats = metric_data.groupby('type')[full_metric_name].agg(['count', 'mean', 'std', 'min', 'max']).round(3)
                st.dataframe(summary_stats)
            
            with col2:
                st.write("**Percentiles**")
                percentiles = metric_data.groupby('type')[full_metric_name].quantile([0.25, 0.5, 0.75]).unstack().round(3)
                percentiles.columns = ['25%', '50%', '75%']
                st.dataframe(percentiles)
    
    with tab2:
        st.header("Correlation Analysis")
        
        if len(selected_metrics) < 2:
            st.warning("Please select at least 2 metrics for correlation analysis.")
        else:
            # Prepare correlation data
            corr_columns = [f"turn.turn_metrics.{m}" for m in selected_metrics]
            corr_data = filtered_df_exploded[corr_columns + ['type']].copy()
            
            # Clean column names for display
            corr_data.columns = [get_human_friendly_metric_name(col.replace('turn.turn_metrics.', '')) if col.startswith('turn.turn_metrics.') else col for col in corr_data.columns]
            
            # Calculate correlation matrix
            corr_matrix = corr_data.select_dtypes(include=[np.number]).corr()
            
            # Create correlation heatmap
            fig = px.imshow(
                corr_matrix,
                text_auto=True,
                aspect="auto",
                title="Correlation Matrix",
                color_continuous_scale='RdBu_r',
                zmin=-1, zmax=1
            )
            
            fig.update_layout(height=600)
            st.plotly_chart(fig, use_container_width=True)
            
            # Scatter plots for strong correlations
            st.subheader("Strong Correlations")
            
            # Find strong correlations (>0.7 or <-0.7)
            strong_corrs = []
            for i in range(len(corr_matrix.columns)):
                for j in range(i+1, len(corr_matrix.columns)):
                    corr_val = corr_matrix.iloc[i, j]
                    if abs(corr_val) > 0.7:
                        strong_corrs.append((corr_matrix.columns[i], corr_matrix.columns[j], corr_val))
            
            if strong_corrs:
                for metric1, metric2, corr_val in strong_corrs[:3]:  # Show top 3
                    fig = px.scatter(
                        corr_data,
                        x=metric1,
                        y=metric2,
                        color='type',
                        title=f"{metric1} vs {metric2} (r={corr_val:.3f})",
                        color_discrete_map=PLOT_PALETTE if len(selected_types) <= 3 else None,
                        opacity=0.6
                    )
                    st.plotly_chart(fig, use_container_width=True)
            else:
                st.info("No strong correlations (|r| > 0.7) found between selected metrics.")
    
    with tab3:
        st.header("Type Comparisons")
        
        if not selected_metrics:
            st.warning("Please select at least one metric to compare.")
        else:
            # Box plots for each metric
            for metric in selected_metrics:
                full_metric_name = f"turn.turn_metrics.{metric}"
                
                if full_metric_name not in filtered_df_exploded.columns:
                    continue
                
                st.subheader(f"πŸ“¦ {get_human_friendly_metric_name(metric)} by Type")
                
                # Create box plot
                fig = px.box(
                    filtered_df_exploded.dropna(subset=[full_metric_name]),
                    x='type',
                    y=full_metric_name,
                    title=f"Distribution of {get_human_friendly_metric_name(metric)} by Type",
                    color='type',
                    color_discrete_map=PLOT_PALETTE if len(selected_types) <= 3 else None
                )
                
                fig.update_layout(
                    xaxis_title="Dataset Type",
                    yaxis_title=get_human_friendly_metric_name(metric),
                    height=400
                )
                
                st.plotly_chart(fig, use_container_width=True)
    
    with tab4:
        st.header("Detailed View")
        
        # Data overview
        st.subheader("πŸ“‹ Dataset Overview")
        
        st.info(f"**Current Dataset:** `{selected_dataset}`")
        
        col1, col2, col3 = st.columns(3)
        
        with col1:
            st.metric("Total Conversations", len(filtered_df))
        
        with col2:
            st.metric("Total Turns", len(filtered_df_exploded))
        
        with col3:
            st.metric("Available Metrics", len(available_metrics))
        
        # Type distribution
        st.subheader("πŸ“Š Type Distribution")
        type_counts = filtered_df['type'].value_counts()
        
        fig = px.pie(
            values=type_counts.values,
            names=type_counts.index,
            title="Distribution of Conversation Types",
            color_discrete_map=PLOT_PALETTE if len(type_counts) <= 3 else None
        )
        
        st.plotly_chart(fig, use_container_width=True)
        
        # Sample data
        st.subheader("πŸ“„ Sample Data")
        
        if st.checkbox("Show raw data sample"):
            sample_cols = ['type'] + [f"turn.turn_metrics.{m}" for m in selected_metrics if f"turn.turn_metrics.{m}" in filtered_df_exploded.columns]
            sample_data = filtered_df_exploded[sample_cols].head(100)
            st.dataframe(sample_data)
        
        # Metric availability
        st.subheader("πŸ“Š Metric Availability")
        
        metric_completeness = {}
        for metric in selected_metrics:
            full_metric_name = f"turn.turn_metrics.{metric}"
            if full_metric_name in filtered_df_exploded.columns:
                completeness = (1 - filtered_df_exploded[full_metric_name].isna().sum() / len(filtered_df_exploded)) * 100
                metric_completeness[get_human_friendly_metric_name(metric)] = completeness
        
        if metric_completeness:
            completeness_df = pd.DataFrame(list(metric_completeness.items()), columns=['Metric', 'Completeness (%)'])
            fig = px.bar(
                completeness_df,
                x='Metric',
                y='Completeness (%)',
                title="Data Completeness by Metric",
                color='Completeness (%)',
                color_continuous_scale='Viridis'
            )
            fig.update_layout(xaxis_tickangle=-45, height=400)
            st.plotly_chart(fig, use_container_width=True)

if __name__ == "__main__":
    main()