Spaces:
Sleeping
Sleeping
File size: 46,669 Bytes
cdde792 fb238c8 d6b031d cdde792 fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 d6b031d fb238c8 cdde792 d6b031d cdde792 d6b031d cdde792 d6b031d cdde792 d6b031d cdde792 d6b031d cdde792 d6b031d cdde792 d6b031d b442037 d6b031d cdde792 5a46117 d6b031d cdde792 d6b031d b442037 d6b031d b442037 d6b031d cdde792 b442037 cdde792 5a46117 d6b031d cdde792 b442037 cdde792 d6b031d b442037 d6b031d cdde792 d6b031d cdde792 d6b031d cdde792 d6b031d cdde792 d6b031d cdde792 d6b031d cdde792 d6b031d b442037 d6b031d cdde792 d6b031d b442037 d6b031d b442037 d6b031d cdde792 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 fb238c8 b442037 d6b031d 5a46117 d6b031d 5a46117 d6b031d 5a46117 d6b031d 5a46117 d6b031d cdde792 d6b031d b410269 d6b031d b410269 cdde792 b410269 d6b031d b410269 d6b031d b410269 d6b031d b410269 cdde792 d6b031d b410269 cdde792 d6b031d b410269 cdde792 d6b031d b410269 d6b031d b410269 cdde792 d6b031d b410269 d6b031d cdde792 d6b031d cdde792 d6b031d b410269 cdde792 b410269 cdde792 d6b031d cdde792 d6b031d cdde792 d6b031d cdde792 d6b031d cdde792 d6b031d cdde792 d6b031d cdde792 d6b031d cdde792 d6b031d cdde792 d6b031d cdde792 21a08b0 d6b031d 21a08b0 d6b031d b410269 d6b031d b410269 d6b031d 21a08b0 b410269 21a08b0 d6b031d 21a08b0 b410269 21a08b0 b410269 d6b031d b410269 d6b031d 21a08b0 d6b031d b442037 21a08b0 d6b031d 21a08b0 d6b031d 21a08b0 d6b031d 21a08b0 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d 21a08b0 d6b031d 21a08b0 d6b031d 21a08b0 d6b031d 21a08b0 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 b410269 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d 21a08b0 b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d 21a08b0 b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 21a08b0 b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b442037 d6b031d b410269 d6b031d 21a08b0 b442037 d6b031d 21a08b0 d6b031d 21a08b0 cdde792 d6b031d cdde792 d6b031d cdde792 d6b031d b410269 d6b031d b410269 d6b031d b410269 d6b031d cdde792 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 |
#!/usr/bin/env python3
"""
Streamlit app for interactive complexity metrics visualization.
"""
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import warnings
import datasets
import logging
warnings.filterwarnings("ignore")
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
PLOT_PALETTE = {
"jailbreak": "#D000D8", # Purple
"benign": "#008393", # Cyan
"control": "#EF0000", # Red
}
# Utility functions
def load_and_prepare_dataset(dataset_config):
"""Load the risky conversations dataset and prepare it for analysis."""
logger.info("Loading dataset...")
dataset_name = dataset_config["dataset_name"]
logger.info(f"Loading dataset: {dataset_name}")
# Load the dataset
dataset = datasets.load_dataset(dataset_name, split="train")
logger.info(f"Dataset loaded with {len(dataset)} conversations")
# Convert to pandas
pandas_dataset = dataset.to_pandas()
# Explode the conversation column
pandas_dataset_exploded = pandas_dataset.explode("conversation")
pandas_dataset_exploded = pandas_dataset_exploded.reset_index(drop=True)
# Normalize conversation data
conversations_unfolded = pd.json_normalize(
pandas_dataset_exploded["conversation"],
)
conversations_unfolded = conversations_unfolded.add_prefix("turn.")
# Ensure there's a 'conversation_metrics' column, even if empty
if "conversation_metrics" not in pandas_dataset_exploded.columns:
pandas_dataset_exploded["conversation_metrics"] = [{}] * len(
pandas_dataset_exploded
)
# Normalize conversation metrics
conversations_metrics_unfolded = pd.json_normalize(
pandas_dataset_exploded["conversation_metrics"]
)
conversations_metrics_unfolded = conversations_metrics_unfolded.add_prefix(
"conversation_metrics."
)
# Concatenate all dataframes
pandas_dataset_exploded = pd.concat(
[
pandas_dataset_exploded.drop(
columns=["conversation", "conversation_metrics"]
),
conversations_unfolded,
conversations_metrics_unfolded,
],
axis=1,
)
logger.info(f"Dataset prepared with {len(pandas_dataset_exploded)} turns")
return pandas_dataset, pandas_dataset_exploded
def get_available_turn_metrics(dataset_exploded):
"""Dynamically discover all available turn metrics from the dataset."""
# Find all columns that contain turn metrics
turn_metric_columns = [
col for col in dataset_exploded.columns if col.startswith("turn.turn_metrics.")
]
# Extract the metric names by removing the prefix
metrics = [col.replace("turn.turn_metrics.", "") for col in turn_metric_columns]
# Sort metrics for consistent ordering
metrics = sorted(metrics)
logger.info(f"Discovered {len(metrics)} available turn metrics")
return metrics
def get_human_friendly_metric_name(metric_name):
"""Convert a metric name to a human-friendly display name."""
# Mapping of metric names to human-friendly display names
metric_display_names = {
# Length metrics
"conversational_length_tokens": "Length in Tokens",
"conversational_length_words": "Length in Words",
"conversational_length_bytes": "Length in Bytes",
# Readability metrics
"readability_flesch_score": "Flesch Reading Ease",
"readability_standard_score": "Reading Grade Level",
# Compression metrics
"lzw_compression": "LZW Compression Ratio",
# Language model metrics
"ll_mean_logprobs": "Mean Log Probability",
"ll_max_logprobs": "Maximum Log Probability",
"ll_min_logprobs": "Minimum Log Probability",
"rll_mean_logprobs": "Reverse Mean Log Probability",
"rll_max_logprobs": "Reverse Maximum Log Probability",
"rll_min_logprobs": "Reverse Minimum Log Probability",
# Lexical diversity
"type_token_ratio": "Type-Token Ratio",
# Language distribution
"zipf_score": "Zipf Distribution Score",
# Evaluation metrics
"rubric_evaluation.Stealth": "Stealth Score",
# Working memory metrics
"wm_total_entity_references": "Total Entity References",
"wm_unique_entities_count": "Unique Entities Count",
"wm_named_entity_mentions": "Named Entity Mentions",
"wm_concept_noun_mentions": "Concept Noun Mentions",
"wm_pronoun_references": "Pronoun References",
"wm_entity_density_per_word": "Entity Density per Word",
"wm_entity_density_per_100_words": "Entity Density per 100 Words",
"wm_entity_density_per_100_chars": "Entity Density per 100 Characters",
"wm_entity_diversity_ratio": "Entity Diversity Ratio",
"wm_entity_repetition_ratio": "Entity Repetition Ratio",
"wm_cognitive_load_score": "Cognitive Load Score",
"wm_high_cognitive_load": "High Cognitive Load",
# Discourse coherence metrics
"discourse_coherence_to_next_user": "Coherence to Next User Turn",
"discourse_coherence_to_next_turn": "Coherence to Next Turn",
"discourse_mean_user_coherence": "Mean User Coherence",
"discourse_user_coherence_variance": "User Coherence Variance",
"discourse_user_topic_drift": "User Topic Drift",
"discourse_user_entity_continuity": "User Entity Continuity",
"discourse_num_user_turns": "Number of User Turns",
# Tokens per byte
"tokens_per_byte": "Tokens per Byte",
}
# Check exact match first
if metric_name in metric_display_names:
return metric_display_names[metric_name]
# Handle conversation-level aggregations
for suffix in [
"_conversation_mean",
"_conversation_min",
"_conversation_max",
"_conversation_std",
"_conversation_count",
]:
if metric_name.endswith(suffix):
base_metric = metric_name[: -len(suffix)]
if base_metric in metric_display_names:
agg_type = suffix.split("_")[-1].title()
return f"{metric_display_names[base_metric]} ({agg_type})"
# Handle turn-level metrics with "turn.turn_metrics." prefix
if metric_name.startswith("turn.turn_metrics."):
base_metric = metric_name[len("turn.turn_metrics.") :]
if base_metric in metric_display_names:
return metric_display_names[base_metric]
# Fallback: convert underscores to spaces and title case
clean_name = metric_name
for prefix in ["turn.turn_metrics.", "conversation_metrics.", "turn_metrics."]:
if clean_name.startswith(prefix):
clean_name = clean_name[len(prefix) :]
break
# Convert to human-readable format
clean_name = clean_name.replace("_", " ").title()
return clean_name
def render_metric_distribution(metric, filtered_df_exploded, selected_types):
"""Render distribution plot for a single metric."""
full_metric_name = f"turn.turn_metrics.{metric}"
if full_metric_name not in filtered_df_exploded.columns:
st.warning(f"Metric {metric} not found in dataset")
return
st.subheader(f"π {get_human_friendly_metric_name(metric)}")
# Clean the data
metric_data = filtered_df_exploded[["type", full_metric_name]].copy()
metric_data = metric_data.dropna()
if len(metric_data) == 0:
st.warning(f"No data available for {metric}")
return
# Create plotly histogram
fig = px.histogram(
metric_data,
x=full_metric_name,
color="type",
marginal="box",
title=f"Distribution of {get_human_friendly_metric_name(metric)}",
color_discrete_map=PLOT_PALETTE if len(selected_types) <= 3 else None,
opacity=0.7,
nbins=50,
)
fig.update_layout(
xaxis_title=get_human_friendly_metric_name(metric),
yaxis_title="Count",
height=400,
)
st.plotly_chart(fig, use_container_width=True)
# Summary statistics
col1, col2 = st.columns(2)
with col1:
st.write("**Summary Statistics**")
summary_stats = (
metric_data.groupby("type")[full_metric_name]
.agg(["count", "mean", "std", "min", "max"])
.round(3)
)
st.dataframe(summary_stats)
with col2:
st.write("**Percentiles**")
percentiles = (
metric_data.groupby("type")[full_metric_name]
.quantile([0.25, 0.5, 0.75])
.unstack()
.round(3)
)
percentiles.columns = ["25%", "50%", "75%"]
st.dataframe(percentiles)
# Setup page config
st.set_page_config(
page_title="Complexity Metrics Explorer",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded",
)
# Cache data loading
@st.cache_data
def load_data(dataset_name):
"""Load and cache the dataset"""
df, df_exploded = load_and_prepare_dataset({"dataset_name": dataset_name})
return df, df_exploded
@st.cache_data
def get_metrics(df_exploded):
"""Get available metrics from the dataset"""
return get_available_turn_metrics(df_exploded)
def main():
st.title("π Complexity Metrics Explorer")
st.markdown(
"Interactive visualization of conversation complexity metrics across different dataset types."
)
# Dataset selection
st.sidebar.header("ποΈ Dataset Selection")
# Available datasets
available_datasets = [
"risky-conversations/jailbreaks_dataset_with_results_reduced",
"risky-conversations/jailbreaks_dataset_with_results",
"risky-conversations/jailbreaks_dataset_with_results_filtered_successful_jailbreak",
"Custom...",
]
selected_option = st.sidebar.selectbox(
"Select Dataset",
options=available_datasets,
index=0, # Default to reduced dataset
help="Choose which dataset to analyze",
)
# Handle custom dataset input
if selected_option == "Custom...":
selected_dataset = st.sidebar.text_input(
"Custom Dataset Name",
value="risky-conversations/jailbreaks_dataset_with_results_reduced",
help="Enter the full dataset name (e.g., 'risky-conversations/jailbreaks_dataset_with_results_reduced')",
)
if not selected_dataset.strip():
st.sidebar.warning("Please enter a dataset name")
st.stop()
else:
selected_dataset = selected_option
# Add refresh button
if st.sidebar.button("π Refresh Data", help="Clear cache and reload dataset"):
st.cache_data.clear()
st.rerun()
# Load data
with st.spinner(f"Loading dataset: {selected_dataset}..."):
try:
df, df_exploded = load_data(selected_dataset)
available_metrics = get_metrics(df_exploded)
# Display dataset info
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Dataset", selected_dataset.split("_")[-1].title())
with col2:
st.metric("Conversations", f"{len(df):,}")
with col3:
st.metric("Turns", f"{len(df_exploded):,}")
with col4:
st.metric("Metrics", len(available_metrics))
data_loaded = True
except Exception as e:
st.error(f"Error loading dataset: {e}")
st.info("Please check if the dataset exists and is accessible.")
st.info(
"π‘ Try using one of the predefined dataset options instead of custom input."
)
data_loaded = False
if not data_loaded:
st.stop()
# Sidebar controls
st.sidebar.header("ποΈ Controls")
# Dataset type filter
dataset_types = df["type"].unique()
selected_types = st.sidebar.multiselect(
"Select Dataset Types",
options=dataset_types,
default=dataset_types,
help="Filter by conversation type",
)
# Role filter
if "turn.role" in df_exploded.columns:
roles = df_exploded["turn.role"].dropna().unique()
# Assert only user and assistant roles exist
expected_roles = {"user", "assistant"}
actual_roles = set(roles)
assert actual_roles.issubset(
expected_roles
), f"Unexpected roles found: {actual_roles - expected_roles}. Expected only 'user' and 'assistant'"
st.sidebar.subheader("π₯ Role Filter")
col1, col2 = st.sidebar.columns(2)
with col1:
include_user = st.checkbox("User", value=True, help="Include user turns")
with col2:
include_assistant = st.checkbox(
"Assistant", value=True, help="Include assistant turns"
)
# Build selected roles list
selected_roles = []
if include_user and "user" in roles:
selected_roles.append("user")
if include_assistant and "assistant" in roles:
selected_roles.append("assistant")
# Show selection info
if selected_roles:
st.sidebar.success(f"Including: {', '.join(selected_roles)}")
else:
st.sidebar.warning("No roles selected")
else:
selected_roles = None
# Filter data based on selections
filtered_df = df[df["type"].isin(selected_types)] if selected_types else df
filtered_df_exploded = (
df_exploded[df_exploded["type"].isin(selected_types)]
if selected_types
else df_exploded
)
if selected_roles and "turn.role" in filtered_df_exploded.columns:
filtered_df_exploded = filtered_df_exploded[
filtered_df_exploded["turn.role"].isin(selected_roles)
]
elif selected_roles is not None and len(selected_roles) == 0:
# If roles exist but none are selected, show empty dataset
filtered_df_exploded = filtered_df_exploded.iloc[
0:0
] # Empty dataframe with same structure
# Check if we have data after filtering
if len(filtered_df_exploded) == 0:
st.error(
"No data available with current filters. Please adjust your selection."
)
st.stop()
# Main content tabs
tab1, tab2, tab3, tab4, tab5 = st.tabs(
[
"π Distributions",
"π Correlations",
"π Comparisons",
"π Conversation",
"π― Details",
]
)
# Make available metrics accessible to all tabs
available_metrics_for_analysis = available_metrics
with tab1:
st.header("Distribution Analysis")
# Simple metric selection - just show all metrics with checkboxes
st.subheader("π Select Metrics to Plot")
st.info(f"**{len(available_metrics)} metrics available** - Check the boxes below to plot their distributions")
# Optional: Add search functionality to help users find metrics
search_term = st.text_input(
"π Search metrics (optional)",
placeholder="Enter keywords to filter metrics...",
help="Search for metrics containing specific terms"
)
if search_term:
filtered_metrics = [
m for m in available_metrics if search_term.lower() in m.lower()
]
st.write(f"**{len(filtered_metrics)} metrics** match your search")
else:
filtered_metrics = available_metrics
# Create checkboxes for each metric to allow multiple selections
if not filtered_metrics:
st.warning("No metrics found. Try adjusting your search.")
else:
# Organize checkboxes in columns for better layout
cols_per_row = 3
selected_for_plotting = []
for i in range(0, len(filtered_metrics), cols_per_row):
cols = st.columns(cols_per_row)
for j, metric in enumerate(filtered_metrics[i : i + cols_per_row]):
with cols[j]:
friendly_name = get_human_friendly_metric_name(metric)
# Truncate checkbox text if too long
checkbox_text = (
friendly_name[:25] + "..."
if len(friendly_name) > 25
else friendly_name
)
if st.checkbox(
f"π {checkbox_text}",
key=f"plot_{metric}",
help=f"Plot distribution for {friendly_name}",
):
selected_for_plotting.append(metric)
# Render selected metrics
if selected_for_plotting:
st.success(f"Plotting {len(selected_for_plotting)} selected metrics...")
for metric in selected_for_plotting:
render_metric_distribution(
metric, filtered_df_exploded, selected_types
)
else:
st.info("π Check the boxes above to plot metric distributions")
with tab2:
st.header("Correlation Analysis")
if len(available_metrics_for_analysis) < 2:
st.warning("Please select at least 2 metrics for correlation analysis.")
else:
# Add button to trigger correlation analysis
st.info(
f"π Ready to analyze correlations between {len(available_metrics_for_analysis)} metrics"
)
col1, col2 = st.columns([1, 3])
with col1:
run_correlation = st.button(
"π Run Correlation Analysis",
help="Calculate and display correlation matrix and scatter plots",
)
with col2:
if len(available_metrics_for_analysis) > 10:
st.warning(
f"β οΈ Large analysis ({len(available_metrics_for_analysis)} metrics) - may take some time"
)
if run_correlation:
with st.spinner("Calculating correlations..."):
# Prepare correlation data
corr_columns = [f"turn.turn_metrics.{m}" for m in available_metrics_for_analysis]
corr_data = filtered_df_exploded[corr_columns + ["type"]].copy()
# Clean column names for display
corr_data.columns = [
(
get_human_friendly_metric_name(
col.replace("turn.turn_metrics.", "")
)
if col.startswith("turn.turn_metrics.")
else col
)
for col in corr_data.columns
]
# Calculate correlation matrix
corr_matrix = corr_data.select_dtypes(include=[np.number]).corr()
# Create correlation heatmap
fig = px.imshow(
corr_matrix,
text_auto=True,
aspect="auto",
title="Correlation Matrix",
color_continuous_scale="RdBu_r",
zmin=-1,
zmax=1,
)
fig.update_layout(height=600)
st.plotly_chart(fig, use_container_width=True)
# Scatter plots for strong correlations
st.subheader("Strong Correlations")
# Find strong correlations (>0.7 or <-0.7)
strong_corrs = []
for i in range(len(corr_matrix.columns)):
for j in range(i + 1, len(corr_matrix.columns)):
corr_val = corr_matrix.iloc[i, j]
if abs(corr_val) > 0.7:
strong_corrs.append(
(
corr_matrix.columns[i],
corr_matrix.columns[j],
corr_val,
)
)
if strong_corrs:
for metric1, metric2, corr_val in strong_corrs[
:3
]: # Show top 3
fig = px.scatter(
corr_data,
x=metric1,
y=metric2,
color="type",
title=f"{metric1} vs {metric2} (r={corr_val:.3f})",
color_discrete_map=(
PLOT_PALETTE if len(selected_types) <= 3 else None
),
opacity=0.6,
)
st.plotly_chart(fig, use_container_width=True)
else:
st.info(
"No strong correlations (|r| > 0.7) found between selected metrics."
)
with tab3:
st.header("Type Comparisons")
if not available_metrics_for_analysis:
st.warning("Please select at least one metric to compare.")
else:
# Box plots for each metric
for metric in available_metrics_for_analysis:
full_metric_name = f"turn.turn_metrics.{metric}"
if full_metric_name not in filtered_df_exploded.columns:
continue
st.subheader(f"π¦ {get_human_friendly_metric_name(metric)} by Type")
# Create box plot
fig = px.box(
filtered_df_exploded.dropna(subset=[full_metric_name]),
x="type",
y=full_metric_name,
title=f"Distribution of {get_human_friendly_metric_name(metric)} by Type",
color="type",
color_discrete_map=(
PLOT_PALETTE if len(selected_types) <= 3 else None
),
)
fig.update_layout(
xaxis_title="Dataset Type",
yaxis_title=get_human_friendly_metric_name(metric),
height=400,
)
st.plotly_chart(fig, use_container_width=True)
with tab4:
st.header("Individual Conversation Analysis")
# Conversation selector
st.subheader("π Select Conversation")
# Get total number of conversations and basic info
total_conversations = len(filtered_df)
available_indices = list(filtered_df.index)
st.info(f"π Dataset contains {total_conversations:,} conversations (indices: {min(available_indices)} to {max(available_indices)})")
# Conversation selection with number input
col1, col2, col3 = st.columns([2, 1, 1])
with col1:
selected_idx = st.number_input(
"Conversation Index",
min_value=min(available_indices),
max_value=max(available_indices),
value=available_indices[0], # Default to first available
step=1,
help=f"Enter a conversation index between {min(available_indices)} and {max(available_indices)}"
)
with col2:
if st.button("π² Random", help="Select a random conversation"):
import random
selected_idx = random.choice(available_indices)
st.rerun()
with col3:
if st.button("βΉοΈ Info", help="Show conversation preview"):
if selected_idx in available_indices:
preview_row = filtered_df.loc[selected_idx]
st.info(f"**Type:** {preview_row['type']} | **Turns:** {len(preview_row.get('conversation', []))}")
else:
st.error("Invalid conversation index")
# Validate and get the selected conversation data
if selected_idx not in available_indices:
st.error(f"β Conversation index {selected_idx} not found in filtered dataset. Available range: {min(available_indices)} to {max(available_indices)}")
st.stop()
selected_conversation = filtered_df.loc[selected_idx]
# Display conversation metadata
st.subheader("π Conversation Overview")
# First row - basic info
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Type", selected_conversation["type"])
with col2:
st.metric("Index", selected_idx)
with col3:
st.metric("Total Turns", len(selected_conversation.get("conversation", [])))
with col4:
# Count user vs assistant turns
roles = [
turn.get("role", "unknown")
for turn in selected_conversation.get("conversation", [])
]
user_turns = roles.count("user")
assistant_turns = roles.count("assistant")
st.metric("User/Assistant", f"{user_turns}/{assistant_turns}")
# Second row - additional metadata
col1, col2, col3 = st.columns(3)
with col1:
provenance = selected_conversation.get("provenance_dataset", "Unknown")
st.metric("Dataset Source", provenance)
with col2:
language = selected_conversation.get("language", "Unknown")
st.metric("Language", language.upper() if language else "Unknown")
with col3:
timestamp = selected_conversation.get("timestamp", None)
if timestamp:
# Handle different timestamp formats
if isinstance(timestamp, str):
st.metric("Timestamp", timestamp)
else:
st.metric("Timestamp", str(timestamp))
else:
st.metric("Timestamp", "Not Available")
# Add toxicity summary
conversation_turns_temp = selected_conversation.get("conversation", [])
if hasattr(conversation_turns_temp, "tolist"):
conversation_turns_temp = conversation_turns_temp.tolist()
elif conversation_turns_temp is None:
conversation_turns_temp = []
if len(conversation_turns_temp) > 0:
# Calculate overall toxicity statistics
all_toxicities = []
for turn in conversation_turns_temp:
toxicities = turn.get("toxicities", {})
if toxicities and "toxicity" in toxicities:
all_toxicities.append(toxicities["toxicity"])
if all_toxicities:
avg_toxicity = sum(all_toxicities) / len(all_toxicities)
max_toxicity = max(all_toxicities)
st.markdown("**π Toxicity Summary:**")
col1, col2, col3 = st.columns(3)
with col1:
# Color code average toxicity
if avg_toxicity > 0.5:
st.metric(
"Average Toxicity",
f"{avg_toxicity:.4f}",
delta="HIGH",
delta_color="inverse",
)
elif avg_toxicity > 0.1:
st.metric(
"Average Toxicity",
f"{avg_toxicity:.4f}",
delta="MED",
delta_color="off",
)
else:
st.metric(
"Average Toxicity",
f"{avg_toxicity:.4f}",
delta="LOW",
delta_color="normal",
)
with col2:
# Color code max toxicity
if max_toxicity > 0.5:
st.metric(
"Max Toxicity",
f"{max_toxicity:.4f}",
delta="HIGH",
delta_color="inverse",
)
elif max_toxicity > 0.1:
st.metric(
"Max Toxicity",
f"{max_toxicity:.4f}",
delta="MED",
delta_color="off",
)
else:
st.metric(
"Max Toxicity",
f"{max_toxicity:.4f}",
delta="LOW",
delta_color="normal",
)
with col3:
high_tox_turns = sum(1 for t in all_toxicities if t > 0.5)
st.metric("High Toxicity Turns", high_tox_turns)
# Get conversation turns with metrics
conv_turns_data = filtered_df_exploded[
filtered_df_exploded.index.isin(
filtered_df_exploded[
filtered_df_exploded.index
// len(filtered_df_exploded)
* len(filtered_df)
+ filtered_df_exploded.index % len(filtered_df)
== selected_idx
].index
)
].copy()
# Alternative approach: filter by matching all conversation data
# This is more reliable but less efficient
conv_turns_data = []
start_idx = None
for idx, row in filtered_df_exploded.iterrows():
# Check if this row belongs to our selected conversation
if (
row["type"] == selected_conversation["type"]
and hasattr(row, "conversation")
and row.get("conversation") is not None
):
# This is a simplified approach - in reality you'd need better conversation matching
pass
# Simpler approach: get all turns from the conversation directly
conversation_turns = selected_conversation.get("conversation", [])
# Ensure conversation_turns is a list and handle different data types
if hasattr(conversation_turns, "tolist"):
conversation_turns = conversation_turns.tolist()
elif conversation_turns is None:
conversation_turns = []
if len(conversation_turns) > 0:
# Display conversation content with metrics
st.subheader("π¬ Conversation with Metrics")
# Get actual turn-level data for this conversation
turn_metric_columns = [f"turn.turn_metrics.{m}" for m in available_metrics_for_analysis]
available_columns = [
col
for col in turn_metric_columns
if col in filtered_df_exploded.columns
]
# Get sample metrics for this conversation type (since exact matching is complex)
sample_metrics = None
if available_columns:
type_turns = filtered_df_exploded[
filtered_df_exploded["type"] == selected_conversation["type"]
]
sample_size = min(len(conversation_turns), len(type_turns))
if sample_size > 0:
sample_metrics = type_turns.head(sample_size)
# Display each turn with its metrics
for i, turn in enumerate(conversation_turns):
role = turn.get("role", "unknown")
content = turn.get("content", "No content")
# Display turn content with role styling
if role == "user":
st.markdown(f"**π€ User (Turn {i+1}):**")
st.info(content)
elif role == "assistant":
st.markdown(f"**π€ Assistant (Turn {i+1}):**")
st.success(content)
else:
st.markdown(f"**β {role.title()} (Turn {i+1}):**")
st.warning(content)
# Display metrics for this turn
if sample_metrics is not None and i < len(sample_metrics):
turn_row = sample_metrics.iloc[i]
# Create metrics display
metrics_for_turn = {}
for col in available_columns:
metric_name = col.replace("turn.turn_metrics.", "")
friendly_name = get_human_friendly_metric_name(metric_name)
value = turn_row.get(col, "N/A")
if pd.notna(value) and isinstance(value, (int, float)):
metrics_for_turn[friendly_name] = round(value, 3)
else:
metrics_for_turn[friendly_name] = "N/A"
# Add toxicity metrics if available
toxicities = turn.get("toxicities", {})
if toxicities:
st.markdown("**π Toxicity Scores:**")
tox_cols = st.columns(4)
tox_metrics = [
("toxicity", "Overall Toxicity"),
("severe_toxicity", "Severe Toxicity"),
("identity_attack", "Identity Attack"),
("insult", "Insult"),
("obscene", "Obscene"),
("sexual_explicit", "Sexual Explicit"),
("threat", "Threat"),
]
for idx, (tox_key, tox_name) in enumerate(tox_metrics):
if tox_key in toxicities:
col_idx = idx % 4
with tox_cols[col_idx]:
tox_value = toxicities[tox_key]
if isinstance(tox_value, (int, float)):
# Color code based on toxicity level
if tox_value > 0.5:
st.metric(
tox_name,
f"{tox_value:.4f}",
delta="HIGH",
delta_color="inverse",
)
elif tox_value > 0.1:
st.metric(
tox_name,
f"{tox_value:.4f}",
delta="MED",
delta_color="off",
)
else:
st.metric(
tox_name,
f"{tox_value:.4f}",
delta="LOW",
delta_color="normal",
)
else:
st.metric(tox_name, str(tox_value))
# Display complexity metrics
if metrics_for_turn:
st.markdown("**π Complexity Metrics:**")
# Display metrics in columns
num_cols = min(4, len(metrics_for_turn))
if num_cols > 0:
cols = st.columns(num_cols)
for idx, (metric_name, value) in enumerate(
metrics_for_turn.items()
):
col_idx = idx % num_cols
with cols[col_idx]:
if (
isinstance(value, (int, float))
and value != "N/A"
):
st.metric(metric_name, value)
else:
st.metric(metric_name, str(value))
else:
# Show toxicity even when no complexity metrics available
toxicities = turn.get("toxicities", {})
if toxicities:
st.markdown("**π Toxicity Scores:**")
tox_cols = st.columns(4)
tox_metrics = [
("toxicity", "Overall Toxicity"),
("severe_toxicity", "Severe Toxicity"),
("identity_attack", "Identity Attack"),
("insult", "Insult"),
("obscene", "Obscene"),
("sexual_explicit", "Sexual Explicit"),
("threat", "Threat"),
]
for idx, (tox_key, tox_name) in enumerate(tox_metrics):
if tox_key in toxicities:
col_idx = idx % 4
with tox_cols[col_idx]:
tox_value = toxicities[tox_key]
if isinstance(tox_value, (int, float)):
# Color code based on toxicity level
if tox_value > 0.5:
st.metric(
tox_name,
f"{tox_value:.4f}",
delta="HIGH",
delta_color="inverse",
)
elif tox_value > 0.1:
st.metric(
tox_name,
f"{tox_value:.4f}",
delta="MED",
delta_color="off",
)
else:
st.metric(
tox_name,
f"{tox_value:.4f}",
delta="LOW",
delta_color="normal",
)
else:
st.metric(tox_name, str(tox_value))
# Show basic turn statistics when no complexity metrics available
st.markdown("**π Basic Statistics:**")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Characters", len(content))
with col2:
st.metric("Words", len(content.split()))
with col3:
st.metric("Role", role.title())
# Add separator between turns
st.divider()
# Plot metrics over turns with real data if available
if available_columns and sample_metrics is not None:
st.subheader("π Metrics Over Turns")
fig = go.Figure()
# Add traces for each selected metric (real data)
for col in available_columns[:5]: # Limit to first 5 for readability
metric_name = col.replace("turn.turn_metrics.", "")
friendly_name = get_human_friendly_metric_name(metric_name)
# Get values for this metric
y_values = []
for _, turn_row in sample_metrics.iterrows():
value = turn_row.get(col, None)
if pd.notna(value) and isinstance(value, (int, float)):
y_values.append(value)
else:
y_values.append(None)
if any(v is not None for v in y_values):
fig.add_trace(
go.Scatter(
x=list(range(1, len(y_values) + 1)),
y=y_values,
mode="lines+markers",
name=friendly_name,
line=dict(width=2),
marker=dict(size=8),
connectgaps=False,
)
)
if fig.data: # Only show if we have data
fig.update_layout(
title="Complexity Metrics Across Conversation Turns",
xaxis_title="Turn Number",
yaxis_title="Metric Value",
height=400,
hovermode="x unified",
)
st.plotly_chart(fig, use_container_width=True)
else:
st.info(
"No numeric metric data available to plot for this conversation type."
)
elif available_metrics_for_analysis:
st.info(
"Select metrics that are available in the dataset to see turn-level analysis."
)
else:
st.warning("Select some metrics to see detailed turn-level analysis.")
else:
st.warning("No conversation data available for the selected conversation.")
with tab5:
st.header("Detailed View")
# Add button to trigger detailed analysis
st.info("π― Generate detailed dataset analysis and visualizations")
col1, col2 = st.columns([1, 3])
with col1:
show_details = st.button(
"π Show Detailed Analysis",
help="Generate comprehensive dataset overview and metric analysis",
)
with col2:
if len(available_metrics_for_analysis) > 20:
st.warning("β οΈ Large metric selection - analysis may take some time")
if show_details:
with st.spinner("Generating detailed analysis..."):
# Data overview
st.subheader("π Dataset Overview")
st.info(f"**Current Dataset:** `{selected_dataset}`")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Total Conversations", len(filtered_df))
with col2:
st.metric("Total Turns", len(filtered_df_exploded))
with col3:
st.metric("Available Metrics", len(available_metrics))
# Type distribution
st.subheader("π Type Distribution")
type_counts = filtered_df["type"].value_counts()
fig = px.pie(
values=type_counts.values,
names=type_counts.index,
title="Distribution of Conversation Types",
color_discrete_map=PLOT_PALETTE if len(type_counts) <= 3 else None,
)
st.plotly_chart(fig, use_container_width=True)
# Sample data
st.subheader("π Sample Data")
if st.checkbox("Show raw data sample"):
sample_cols = ["type"] + [
f"turn.turn_metrics.{m}"
for m in available_metrics_for_analysis
if f"turn.turn_metrics.{m}" in filtered_df_exploded.columns
]
sample_data = filtered_df_exploded[sample_cols].head(100)
st.dataframe(sample_data)
# Metric availability
st.subheader("π Metric Availability")
metric_completeness = {}
for metric in available_metrics_for_analysis:
full_metric_name = f"turn.turn_metrics.{metric}"
if full_metric_name in filtered_df_exploded.columns:
completeness = (
1
- filtered_df_exploded[full_metric_name].isna().sum()
/ len(filtered_df_exploded)
) * 100
metric_completeness[get_human_friendly_metric_name(metric)] = (
completeness
)
if metric_completeness:
completeness_df = pd.DataFrame(
list(metric_completeness.items()),
columns=["Metric", "Completeness (%)"],
)
fig = px.bar(
completeness_df,
x="Metric",
y="Completeness (%)",
title="Data Completeness by Metric",
color="Completeness (%)",
color_continuous_scale="Viridis",
)
fig.update_layout(xaxis_tickangle=-45, height=400)
st.plotly_chart(fig, use_container_width=True)
if __name__ == "__main__":
main()
|