chatbot-fr / sauve /rag_model_ollama_v1 copy.py
rkonan's picture
reorganisation
236b637
import os
import json
import pickle
import textwrap
import logging
from typing import List, Optional, Dict, Any, Iterable, Tuple
import requests
import faiss
import numpy as np
from llama_index.core import VectorStoreIndex
from llama_index.core.schema import TextNode
from llama_index.vector_stores.faiss import FaissVectorStore
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from sentence_transformers.util import cos_sim
# === Logger configuration ===
logger = logging.getLogger("RAGEngine")
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
formatter = logging.Formatter("[%(asctime)s] %(levelname)s - %(message)s")
handler.setFormatter(formatter)
if not logger.handlers:
logger.addHandler(handler)
MAX_TOKENS = 64 # bornage court sur CPU-only
DEFAULT_STOPS = ["</s>", "\n\n", "\nQuestion:", "Question:"]
class OllamaClient:
"""
Minimal Ollama client for /api/generate (text completion) with streaming support.
"""
def __init__(self, model: str, host: Optional[str] = None, timeout: int = 300):
self.model = model
self.host = host or os.getenv("OLLAMA_HOST", "http://localhost:11434")
self.timeout = timeout
self._gen_url = self.host.rstrip("/") + "/api/generate"
def generate(
self,
prompt: str,
stop: Optional[List[str]] = None,
max_tokens: Optional[int] = None,
stream: bool = False,
options: Optional[Dict[str, Any]] = None,
raw: bool = False,
) -> str | Iterable[str]:
payload: Dict[str, Any] = {
"model": self.model,
"prompt": prompt,
"stream": stream,
}
if raw:
payload["raw"] = True # IMPORTANT: désactive le template Modelfile
if stop:
payload["stop"] = stop
if max_tokens is not None:
payload["num_predict"] = int(max_tokens) # nommage Ollama
if options:
payload["options"] = options
logger.debug(f"POST {self._gen_url} (stream={stream})")
if stream:
with requests.post(self._gen_url, json=payload, stream=True, timeout=self.timeout) as r:
r.raise_for_status()
for line in r.iter_lines(decode_unicode=True):
if not line:
continue
try:
data = json.loads(line)
except Exception:
continue
# En stream, Ollama renvoie des morceaux dans "response"
if "response" in data and not data.get("done"):
yield data["response"]
if data.get("done"):
break
return
r = requests.post(self._gen_url, json=payload, timeout=self.timeout)
r.raise_for_status()
data = r.json()
return data.get("response", "")
class RAGEngine:
def __init__(
self,
model_name: str,
vector_path: str,
index_path: str,
model_threads: int = 4,
ollama_host: Optional[str] = None,
ollama_opts: Optional[Dict[str, Any]] = None,
):
"""
Args:
model_name: e.g. "noushermes_rag"
vector_path: pickle file with chunk texts list[str]
index_path: FAISS index path
model_threads: forwarded as a hint to Ollama options
ollama_host: override OLLAMA_HOST (default http://localhost:11434)
ollama_opts: extra Ollama options (temperature, num_ctx, num_batch, num_thread)
"""
logger.info(f"🔎 rag_model_ollama source: {__file__}")
logger.info("📦 Initialisation du moteur RAG (Ollama)...")
# Options Ollama (par défaut optimisées CPU)
opts = dict(ollama_opts or {})
opts.setdefault("temperature", 0.0)
opts.setdefault("num_ctx", 512)
opts.setdefault("num_batch", 16)
if "num_thread" not in opts and model_threads:
opts["num_thread"] = int(model_threads)
self.llm = OllamaClient(model=model_name, host=ollama_host)
self.ollama_opts = opts
# Embedding model pour retrieval / rerank
self.embed_model = HuggingFaceEmbedding(model_name="intfloat/multilingual-e5-base")
logger.info(f"📂 Chargement des données vectorielles depuis {vector_path}")
with open(vector_path, "rb") as f:
chunk_texts: List[str] = pickle.load(f)
nodes = [TextNode(text=chunk) for chunk in chunk_texts]
faiss_index = faiss.read_index(index_path)
vector_store = FaissVectorStore(faiss_index=faiss_index)
self.index = VectorStoreIndex(nodes=nodes, embed_model=self.embed_model, vector_store=vector_store)
logger.info("✅ Moteur RAG (Ollama) initialisé avec succès.")
# ---------------- LLM helpers (via Ollama) ----------------
def _complete(
self,
prompt: str,
stop: Optional[List[str]] = None,
max_tokens: int = MAX_TOKENS,
raw: bool = True
) -> str:
text = self.llm.generate(
prompt=prompt,
stop=stop or DEFAULT_STOPS,
max_tokens=max_tokens,
stream=False,
options=self.ollama_opts,
raw=raw, # toujours True pour bypass Modelfile
)
# Par sécurité si un générateur se glisse quand stream=False
try:
if hasattr(text, "__iter__") and not isinstance(text, (str, bytes)):
chunks = []
for t in text:
if not isinstance(t, (str, bytes)):
continue
chunks.append(t)
text = "".join(chunks)
except Exception:
pass
return (text or "").strip()
def _complete_stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
max_tokens: int = MAX_TOKENS,
raw: bool = True
) -> Iterable[str]:
return self.llm.generate(
prompt=prompt,
stop=stop or DEFAULT_STOPS,
max_tokens=max_tokens,
stream=True,
options=self.ollama_opts,
raw=raw, # toujours True pour bypass Modelfile
)
# ---------------- Utilities ----------------
def _is_greeting(self, text: str) -> bool:
s = text.lower().strip()
return s in {"bonjour", "salut", "hello", "bonsoir", "hi", "coucou", "yo"} or len(s.split()) <= 2
def _decide_mode(self, scores: List[float], tau: float = 0.32, is_greeting: bool = False) -> str:
if is_greeting:
return "llm"
top = scores[0] if scores else 0.0
return "rag" if top >= tau else "llm"
def _stream_with_local_stops(self, tokens: Iterable[str], stops: List[str]) -> Iterable[str]:
"""
Coupe localement le stream si un stop apparaît, même si le serveur ne s'arrête pas.
"""
buffer = ""
for chunk in tokens:
buffer += chunk
# Check si un des stops est présent dans le buffer
hit = None
for s in stops:
idx = buffer.find(s)
if idx != -1:
hit = (s, idx)
break
if hit:
s, idx = hit
# Yield tout avant le stop, puis stoppe
yield buffer[:idx]
break
else:
# Si pas de stop, on envoie le chunk tel quel
yield chunk
# ---------------- Retrieval + (optional) rerank ----------------
def get_adaptive_top_k(self, question: str) -> int:
q = question.lower()
if len(q.split()) <= 7:
top_k = 8
elif any(w in q for w in ["liste", "résume", "quels sont", "explique", "comment"]):
top_k = 10
else:
top_k = 8
logger.info(f"🔢 top_k déterminé automatiquement : {top_k}")
return top_k
def rerank_nodes(self, question: str, retrieved_nodes, top_k: int = 3) -> Tuple[List[float], List[TextNode]]:
logger.info(f"🔍 Re-ranking des {len(retrieved_nodes)} chunks pour la question : « {question} »")
q_emb = self.embed_model.get_query_embedding(question)
scored_nodes: List[Tuple[float, TextNode]] = []
for node in retrieved_nodes:
chunk_text = node.get_content()
chunk_emb = self.embed_model.get_text_embedding(chunk_text)
score = cos_sim(q_emb, chunk_emb).item()
scored_nodes.append((score, node))
ranked = sorted(scored_nodes, key=lambda x: x[0], reverse=True)
logger.info("📊 Chunks les plus pertinents :")
for i, (score, node) in enumerate(ranked[:top_k]):
chunk_preview = textwrap.shorten(node.get_content().replace("\n", " "), width=100)
logger.info(f"#{i+1} | Score: {score:.4f} | {chunk_preview}")
top = ranked[:top_k]
scores = [s for s, _ in top]
nodes = [n for _, n in top]
return scores, nodes
def retrieve_context(self, question: str, top_k: int = 3) -> Tuple[str, List[TextNode], List[float]]:
logger.info("📥 Récupération du contexte...")
retriever = self.index.as_retriever(similarity_top_k=top_k)
retrieved_nodes = retriever.retrieve(question)
scores, nodes = self.rerank_nodes(question, retrieved_nodes, top_k)
context = "\n\n".join(n.get_content()[:500] for n in nodes)
return context, nodes, scores
# ---------------- Public API ----------------
def ask(self, question_raw: str, allow_fallback: bool = True) -> str:
logger.info(f"💬 Question reçue : {question_raw}")
is_hello = self._is_greeting(question_raw)
# retrieval (sauf salutations)
context, scores = "", []
if not is_hello:
top_k = self.get_adaptive_top_k(question_raw)
context, _, scores = self.retrieve_context(question_raw, top_k)
# router RAG vs LLM
mode = self._decide_mode(scores, tau=0.32, is_greeting=is_hello)
logger.info(f"🧭 Mode choisi : {mode}")
if mode == "rag":
prompt = (
"Instruction: Réponds uniquement à partir du contexte. "
"Si la réponse n'est pas déductible, réponds exactement: \"Information non présente dans le contexte.\""
"\n\nContexte :\n"
f"{context}\n\n"
f"Question : {question_raw}\n"
"Réponse :"
)
resp = self._complete(
prompt,
stop=DEFAULT_STOPS,
max_tokens=MAX_TOKENS,
raw=True, # ✅ bypass Modelfile/template
).strip()
# fallback LLM‑pur si le RAG n'a rien trouvé
if allow_fallback and "Information non présente" in resp:
logger.info("↪️ Fallback LLM‑pur (hors contexte)")
prompt_llm = (
"Réponds brièvement et précisément en français.\n"
f"Question : {question_raw}\n"
"Réponse :"
)
resp = self._complete(
prompt_llm,
stop=DEFAULT_STOPS,
max_tokens=MAX_TOKENS,
raw=True
).strip()
ellipsis = "..." if len(resp) > 120 else ""
logger.info(f"🧠 Réponse générée : {resp[:120]}{ellipsis}")
return resp
# LLM pur (salutation ou score faible)
prompt_llm = (
"Réponds brièvement et précisément en français.\n"
f"Question : {question_raw}\n"
"Réponse :"
)
resp = self._complete(
prompt_llm,
stop=DEFAULT_STOPS,
max_tokens=MAX_TOKENS,
raw=True
).strip()
ellipsis = "..." if len(resp) > 120 else ""
logger.info(f"🧠 Réponse générée : {resp[:120]}{ellipsis}")
return resp
def ask_stream(self, question: str, allow_fallback: bool = False) -> Iterable[str]:
logger.info(f"💬 [Stream] Question reçue : {question}")
is_hello = self._is_greeting(question)
context, scores = "", []
if not is_hello:
top_k = self.get_adaptive_top_k(question)
context, _, scores = self.retrieve_context(question, top_k)
mode = self._decide_mode(scores, tau=0.32, is_greeting=is_hello)
logger.info(f"🧭 Mode choisi (stream) : {mode}")
stops = DEFAULT_STOPS
if mode == "rag":
prompt = (
"Instruction: Réponds uniquement à partir du contexte. "
"Si la réponse n'est pas déductible, réponds exactement: \"Information non présente dans le contexte.\""
"\n\nContexte :\n"
f"{context}\n\n"
f"Question : {question}\n"
"Réponse :"
)
logger.info("📡 Début du streaming de la réponse (RAG)...")
tokens = self._complete_stream(
prompt,
stop=stops,
max_tokens=MAX_TOKENS,
raw=True,
)
# Blindage local: coupe si un stop apparaît
for t in self._stream_with_local_stops(tokens, stops):
if t:
yield t
logger.info("📡 Fin du streaming de la réponse (RAG).")
return
# LLM pur en stream
prompt_llm = (
"Réponds brièvement et précisément en français.\n"
f"Question : {question}\n"
"Réponse :"
)
logger.info("📡 Début du streaming de la réponse (LLM pur)...")
tokens = self._complete_stream(
prompt_llm,
stop=stops,
max_tokens=MAX_TOKENS,
raw=True,
)
for t in self._stream_with_local_stops(tokens, stops):
if t:
yield t
logger.info("📡 Fin du streaming de la réponse (LLM pur).")