rmayormartins's picture
go13
7731d94
raw
history blame
14.9 kB
import os
import shutil
import gradio as gr
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms, models
from torch.utils.data import DataLoader, random_split
from PIL import Image
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from sklearn.metrics import classification_report, confusion_matrix
import tempfile
import warnings
warnings.filterwarnings("ignore")
print("🖥️ Iniciando sistema...")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Device: {device}")
# Modelos disponíveis
MODELS = {
'ResNet18': models.resnet18,
'ResNet34': models.resnet34,
'MobileNetV2': models.mobilenet_v2
}
# Estado global
class AppState:
def __init__(self):
self.model = None
self.train_loader = None
self.val_loader = None
self.test_loader = None
self.dataset_path = None
self.class_dirs = []
self.class_labels = ['classe_0', 'classe_1']
self.num_classes = 2
self.image_queue = [] # Para armazenar imagens uploaded
state = AppState()
def setup_classes(num_classes_value):
"""Configura número de classes"""
try:
state.num_classes = int(num_classes_value)
state.dataset_path = tempfile.mkdtemp()
state.class_labels = [f'classe_{i}' for i in range(state.num_classes)]
# Criar diretórios
state.class_dirs = []
for i in range(state.num_classes):
class_dir = os.path.join(state.dataset_path, f'classe_{i}')
os.makedirs(class_dir, exist_ok=True)
state.class_dirs.append(class_dir)
return f"✅ Sistema configurado para {state.num_classes} classes"
except Exception as e:
return f"❌ Erro: {str(e)}"
def set_class_labels(labels_text):
"""Define rótulos das classes"""
try:
labels = [label.strip() for label in labels_text.split(',')]
if len(labels) != state.num_classes:
return f"❌ Forneça {state.num_classes} rótulos separados por vírgula"
state.class_labels = labels
return f"✅ Rótulos definidos: {', '.join(state.class_labels)}"
except Exception as e:
return f"❌ Erro: {str(e)}"
def add_image_to_queue(image):
"""Adiciona imagem à fila"""
if image is None:
return "❌ Selecione uma imagem", 0
state.image_queue.append(image)
return f"✅ Imagem adicionada à fila. Total: {len(state.image_queue)}", len(state.image_queue)
def save_images_to_class(class_id, clear_queue=True):
"""Salva todas as imagens da fila para uma classe"""
try:
if not state.image_queue:
return "❌ Nenhuma imagem na fila"
if not state.class_dirs:
return "❌ Configure as classes primeiro"
class_idx = int(class_id)
if class_idx >= len(state.class_dirs):
return "❌ Classe inválida"
class_dir = state.class_dirs[class_idx]
count = 0
for i, image in enumerate(state.image_queue):
try:
import time
filename = f"img_{int(time.time())}_{i}.jpg"
filepath = os.path.join(class_dir, filename)
image.save(filepath)
count += 1
except Exception as e:
print(f"Erro salvando imagem {i}: {e}")
if clear_queue:
state.image_queue = []
class_name = state.class_labels[class_idx]
return f"✅ {count} imagens salvas em '{class_name}'"
except Exception as e:
return f"❌ Erro: {str(e)}"
def clear_image_queue():
"""Limpa a fila de imagens"""
state.image_queue = []
return "✅ Fila limpa", 0
def prepare_data(batch_size):
"""Prepara dados para treinamento"""
try:
if not state.dataset_path:
return "❌ Configure as classes primeiro"
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
dataset = datasets.ImageFolder(state.dataset_path, transform=transform)
if len(dataset) < 6:
return f"❌ Poucas imagens ({len(dataset)}). Mínimo: 6"
# Divisão: 70% treino, 20% val, 10% teste
train_size = int(0.7 * len(dataset))
val_size = int(0.2 * len(dataset))
test_size = len(dataset) - train_size - val_size
train_dataset, val_dataset, test_dataset = random_split(
dataset, [train_size, val_size, test_size],
generator=torch.Generator().manual_seed(42)
)
batch_size = max(1, min(int(batch_size), 32))
state.train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
state.val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
state.test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
return f"✅ Dados preparados:\n• Treino: {train_size}\n• Validação: {val_size}\n• Teste: {test_size}\n• Batch size: {batch_size}"
except Exception as e:
return f"❌ Erro: {str(e)}"
def train_model(model_name, epochs, lr):
"""Treina o modelo"""
try:
if state.train_loader is None:
return "❌ Prepare os dados primeiro"
# Carregar modelo
state.model = MODELS[model_name](pretrained=True)
# Adaptar última camada
if hasattr(state.model, 'fc'):
state.model.fc = nn.Linear(state.model.fc.in_features, state.num_classes)
elif hasattr(state.model, 'classifier'):
if isinstance(state.model.classifier, nn.Sequential):
state.model.classifier[-1] = nn.Linear(state.model.classifier[-1].in_features, state.num_classes)
state.model = state.model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(state.model.parameters(), lr=float(lr))
results = [f"🚀 Treinando {model_name}"]
state.model.train()
for epoch in range(int(epochs)):
running_loss = 0.0
correct = 0
total = 0
for inputs, labels in state.train_loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = state.model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
epoch_loss = running_loss / len(state.train_loader)
epoch_acc = 100. * correct / total
results.append(f"Época {epoch+1}: Loss={epoch_loss:.4f}, Acc={epoch_acc:.2f}%")
results.append("✅ Treinamento concluído!")
return "\n".join(results)
except Exception as e:
return f"❌ Erro: {str(e)}"
def evaluate_model():
"""Avalia o modelo"""
try:
if state.model is None or state.test_loader is None:
return "❌ Modelo/dados não disponíveis"
state.model.eval()
all_preds = []
all_labels = []
with torch.no_grad():
for inputs, labels in state.test_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = state.model(inputs)
_, preds = torch.max(outputs, 1)
all_preds.extend(preds.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
report = classification_report(all_labels, all_preds, target_names=state.class_labels, zero_division=0)
return f"📊 RELATÓRIO DE AVALIAÇÃO:\n\n{report}"
except Exception as e:
return f"❌ Erro: {str(e)}"
def generate_confusion_matrix():
"""Gera matriz de confusão"""
try:
if state.model is None or state.test_loader is None:
return None
state.model.eval()
all_preds = []
all_labels = []
with torch.no_grad():
for inputs, labels in state.test_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = state.model(inputs)
_, preds = torch.max(outputs, 1)
all_preds.extend(preds.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
cm = confusion_matrix(all_labels, all_preds)
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues",
xticklabels=state.class_labels,
yticklabels=state.class_labels)
plt.xlabel('Predições')
plt.ylabel('Valores Reais')
plt.title('Matriz de Confusão')
plt.tight_layout()
temp_path = tempfile.NamedTemporaryFile(suffix='.png', delete=False).name
plt.savefig(temp_path, dpi=150, bbox_inches='tight')
plt.close()
return temp_path
except Exception as e:
return None
def predict_image(image):
"""Prediz uma única imagem"""
try:
if state.model is None:
return "❌ Treine o modelo primeiro"
if image is None:
return "❌ Selecione uma imagem"
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
img_tensor = transform(image).unsqueeze(0).to(device)
state.model.eval()
with torch.no_grad():
outputs = state.model(img_tensor)
probs = torch.nn.functional.softmax(outputs[0], dim=0)
_, predicted = torch.max(outputs, 1)
class_id = predicted.item()
confidence = probs[class_id].item() * 100
class_name = state.class_labels[class_id]
return f"🎯 Predição: {class_name}\n📊 Confiança: {confidence:.2f}%"
except Exception as e:
return f"❌ Erro: {str(e)}"
# Interface usando componentes mais antigos/estáveis
def create_interface():
with gr.Blocks(title="🖼️ Classificador Completo") as demo:
gr.Markdown("# 🖼️ Sistema de Classificação de Imagens Completo")
# Configuração
with gr.Group():
gr.Markdown("## 1️⃣ Configuração")
with gr.Row():
num_classes = gr.Number(label="Número de Classes (2-5)", value=2, precision=0)
setup_btn = gr.Button("🔧 Configurar")
setup_status = gr.Textbox(label="Status")
labels_input = gr.Textbox(label="Rótulos (separados por vírgula)", value="gato,cachorro")
labels_btn = gr.Button("🏷️ Definir Rótulos")
labels_status = gr.Textbox(label="Status dos Rótulos")
# Upload de Imagens
with gr.Group():
gr.Markdown("## 2️⃣ Upload de Imagens")
with gr.Row():
upload_image = gr.Image(type="pil", label="Upload de Imagem")
with gr.Column():
add_btn = gr.Button("➕ Adicionar à Fila")
queue_status = gr.Textbox(label="Fila de Imagens")
queue_count = gr.Number(label="Total na Fila", value=0)
with gr.Row():
class_id = gr.Number(label="Classe (0, 1, 2...)", value=0, precision=0)
save_btn = gr.Button("💾 Salvar Fila na Classe", variant="primary")
clear_btn = gr.Button("🗑️ Limpar Fila")
save_status = gr.Textbox(label="Status do Upload")
# Treinamento
with gr.Group():
gr.Markdown("## 3️⃣ Preparação e Treinamento")
batch_size = gr.Number(label="Batch Size", value=8, precision=0)
prepare_btn = gr.Button("⚙️ Preparar Dados", variant="primary")
prepare_status = gr.Textbox(label="Status da Preparação", lines=4)
with gr.Row():
model_choice = gr.Dropdown(choices=list(MODELS.keys()), value="MobileNetV2", label="Modelo")
epochs = gr.Number(label="Épocas", value=5, precision=0)
learning_rate = gr.Number(label="Learning Rate", value=0.001)
train_btn = gr.Button("🚀 Treinar Modelo", variant="primary")
train_status = gr.Textbox(label="Status do Treinamento", lines=8)
# Avaliação
with gr.Group():
gr.Markdown("## 4️⃣ Avaliação")
with gr.Row():
eval_btn = gr.Button("📊 Avaliar Modelo", variant="primary")
matrix_btn = gr.Button("📈 Matriz de Confusão")
eval_results = gr.Textbox(label="Relatório de Avaliação", lines=12)
confusion_plot = gr.Image(label="Matriz de Confusão")
# Predição
with gr.Group():
gr.Markdown("## 5️⃣ Predição")
predict_img = gr.Image(type="pil", label="Imagem para Predição")
predict_btn = gr.Button("🔮 Predizer", variant="primary")
predict_result = gr.Textbox(label="Resultado da Predição", lines=3)
# Conectar eventos
setup_btn.click(setup_classes, [num_classes], [setup_status])
labels_btn.click(set_class_labels, [labels_input], [labels_status])
add_btn.click(add_image_to_queue, [upload_image], [queue_status, queue_count])
save_btn.click(save_images_to_class, [class_id], [save_status])
clear_btn.click(clear_image_queue, outputs=[queue_status, queue_count])
prepare_btn.click(prepare_data, [batch_size], [prepare_status])
train_btn.click(train_model, [model_choice, epochs, learning_rate], [train_status])
eval_btn.click(evaluate_model, outputs=[eval_results])
matrix_btn.click(generate_confusion_matrix, outputs=[confusion_plot])
predict_btn.click(predict_image, [predict_img], [predict_result])
return demo
if __name__ == "__main__":
print("🎯 Criando interface...")
demo = create_interface()
print("🚀 Iniciando aplicação...")
demo.launch(server_name="0.0.0.0", server_port=7860, show_api=False)