Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from megatron.core import ModelParallelConfig, parallel_state | |
from torch.distributed import _functional_collectives as funcol | |
from torch.distributed._functional_collectives import all_reduce | |
from cosmos_predict1.autoregressive.modules.linear import ColumnParallelLinear, RowParallelLinear | |
def compute_llama3_ffn_hidden_dim(dim: int, multiple_of: int, ffn_dim_multiplier: float) -> int: | |
""" | |
Computes the feedforward network dimensionality. | |
Args: | |
dim (int): The embedding dimensionality. | |
multiple_of (int): The multiple to round up the hidden dimensionality. | |
ffn_dim_multiplier (float): The multiplier for the hidden dimensionality. | |
Returns: | |
The feedforward network dimensionality. | |
""" | |
hidden_dim = 4 * dim | |
hidden_dim = int(2 * hidden_dim / 3) # custom dim factor | |
hidden_dim = int(ffn_dim_multiplier * hidden_dim) | |
# Round up hidden dimensionality to the nearest multiple | |
return multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) | |
class MLP(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
hidden_dim: int, | |
tensor_parallel_size: int = 1, | |
): | |
""" | |
Initializes the multilayer perceptron (MLP) module. | |
Args: | |
dim: The input and output dimensionality. | |
hidden_dim: The dimensionality of the hidden layer. | |
""" | |
super().__init__() | |
self.tp_size = tensor_parallel_size | |
self.w1 = nn.Linear(dim, hidden_dim // self.tp_size, bias=False) | |
self.w2 = nn.Linear(hidden_dim // self.tp_size, dim, bias=False) | |
self.w3 = nn.Linear(dim, hidden_dim // self.tp_size, bias=False) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
""" | |
Performs the forward pass of the MLP module. | |
Args: | |
x: The input tensor of shape (batch_size, dim). | |
Returns: | |
The output tensor of shape (batch_size, dim). | |
""" | |
output = self.w2(F.silu(self.w1(x)) * self.w3(x)) | |
if self.tp_size > 1: | |
output = all_reduce(output, "sum", group=parallel_state.get_tensor_model_parallel_group()) | |
return output | |
class TrainingMLP(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
hidden_dim: int, | |
hidden_dropout: float = 0.0, | |
set_parallel_mode: bool = False, | |
model_parallel: Optional[ModelParallelConfig] = None, | |
inference: bool = False, | |
): | |
""" | |
Initializes the multilayer perceptron (MLP) module. | |
Args: | |
dim: The input and output dimensionality. | |
hidden_dim: The dimensionality of the hidden layer. | |
hidden_dropout: Dropout after the attention and feed-forward layers (following TransformerEngine's | |
implementation in its TransformerLayer class). | |
set_parallel_mode: Whether to use column and row parallel linear layers. | |
model_parallel: The model parallel configuration. | |
inference: Whether the model is used for inference. | |
""" | |
super().__init__() | |
self.hidden_dropout = hidden_dropout | |
if model_parallel and model_parallel.tensor_model_parallel_size > 1: | |
self.tp_size = model_parallel.tensor_model_parallel_size | |
else: | |
self.tp_size = 1 | |
if set_parallel_mode and not inference: | |
kwargs = {"bias": False, "init_method": lambda x: x, "config": model_parallel} | |
# Using column and row parallel linear layers | |
self.w1 = ColumnParallelLinear(dim, hidden_dim, gather_output=False, **kwargs) | |
self.w2 = RowParallelLinear(hidden_dim, dim, input_is_parallel=True, skip_bias_add=True, **kwargs) | |
self.w3 = ColumnParallelLinear(dim, hidden_dim, gather_output=False, **kwargs) | |
else: | |
self.w1 = nn.Linear(dim, hidden_dim // self.tp_size, bias=False) | |
self.w2 = nn.Linear(hidden_dim // self.tp_size, dim, bias=False) | |
self.w3 = nn.Linear(dim, hidden_dim // self.tp_size, bias=False) | |
self.inference = inference | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
""" | |
Performs the forward pass of the MLP module. | |
Args: | |
x: The input tensor of shape (batch_size, dim). | |
Returns: | |
The output tensor of shape (batch_size, dim). | |
""" | |
x = F.dropout(x, p=self.hidden_dropout, training=self.training) | |
output = self.w2(F.silu(self.w1(x)) * self.w3(x)) | |
output = F.dropout(output, p=self.hidden_dropout, training=self.training) | |
if self.inference and self.tp_size > 1: | |
output = funcol.all_reduce(output, "sum", group=parallel_state.get_tensor_model_parallel_group()) | |
return output | |
def init_weights(self, init_std: float): | |
""" | |
Initializes the weights of the MLP module. | |
""" | |
nn.init.trunc_normal_(self.w1.weight, mean=0.0, std=0.02) | |
for linear in (self.w2, self.w3): | |
nn.init.trunc_normal_(linear.weight, mean=0.0, std=init_std) | |