Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Optional | |
import numpy as np | |
import torch | |
from einops import rearrange, repeat | |
from torch import nn | |
from torch.distributed import ProcessGroup, get_process_group_ranks | |
from cosmos_predict1.diffusion.module.attention import normalize | |
from cosmos_predict1.diffusion.module.parallel import split_inputs_cp | |
from cosmos_predict1.diffusion.module.timm import trunc_normal_ | |
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | |
""" | |
embed_dim: output dimension for each position | |
pos: a list of positions to be encoded: size (M,) | |
out: (M, D) | |
""" | |
assert embed_dim % 2 == 0 | |
omega = np.arange(embed_dim // 2, dtype=np.float64) | |
omega /= embed_dim / 2.0 | |
omega = 1.0 / 10000**omega # (D/2,) | |
pos = pos.reshape(-1) # (M,) | |
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product | |
emb_sin = np.sin(out) # (M, D/2) | |
emb_cos = np.cos(out) # (M, D/2) | |
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) | |
return emb | |
class VideoPositionEmb(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.cp_group = None | |
def enable_context_parallel(self, cp_group: ProcessGroup): | |
self.cp_group = cp_group | |
def disable_context_parallel(self): | |
self.cp_group = None | |
def forward(self, x_B_T_H_W_C: torch.Tensor, fps=Optional[torch.Tensor]) -> torch.Tensor: | |
""" | |
It delegates the embedding generation to generate_embeddings function. | |
""" | |
B_T_H_W_C = x_B_T_H_W_C.shape | |
if self.cp_group is not None: | |
cp_ranks = get_process_group_ranks(self.cp_group) | |
cp_size = len(cp_ranks) | |
B, T, H, W, C = B_T_H_W_C | |
B_T_H_W_C = (B, T * cp_size, H, W, C) | |
embeddings = self.generate_embeddings(B_T_H_W_C, fps=fps) | |
if self.cp_group is not None: | |
if isinstance(self, VideoRopePosition3DEmb): | |
seq_dim = 0 | |
else: | |
seq_dim = 1 | |
embeddings = split_inputs_cp(x=embeddings, seq_dim=seq_dim, cp_group=self.cp_group) | |
return embeddings | |
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]): | |
raise NotImplementedError | |
class VideoRopePosition3DEmb(VideoPositionEmb): | |
def __init__( | |
self, | |
*, # enforce keyword arguments | |
head_dim: int, | |
len_h: int, | |
len_w: int, | |
len_t: int, | |
base_fps: int = 24, | |
h_extrapolation_ratio: float = 1.0, | |
w_extrapolation_ratio: float = 1.0, | |
t_extrapolation_ratio: float = 1.0, | |
**kwargs, # used for compatibility with other positional embeddings; unused in this class | |
): | |
del kwargs | |
super().__init__() | |
self.register_buffer("seq", torch.arange(max(len_h, len_w, len_t), dtype=torch.float)) | |
self.base_fps = base_fps | |
self.max_h = len_h | |
self.max_w = len_w | |
dim = head_dim | |
dim_h = dim // 6 * 2 | |
dim_w = dim_h | |
dim_t = dim - 2 * dim_h | |
assert dim == dim_h + dim_w + dim_t, f"bad dim: {dim} != {dim_h} + {dim_w} + {dim_t}" | |
self.register_buffer( | |
"dim_spatial_range", | |
torch.arange(0, dim_h, 2)[: (dim_h // 2)].float().cuda() / dim_h, | |
persistent=False, | |
) | |
self.register_buffer( | |
"dim_temporal_range", | |
torch.arange(0, dim_t, 2)[: (dim_t // 2)].float().cuda() / dim_t, | |
persistent=False, | |
) | |
self.h_ntk_factor = h_extrapolation_ratio ** (dim_h / (dim_h - 2)) | |
self.w_ntk_factor = w_extrapolation_ratio ** (dim_w / (dim_w - 2)) | |
self.t_ntk_factor = t_extrapolation_ratio ** (dim_t / (dim_t - 2)) | |
def generate_embeddings( | |
self, | |
B_T_H_W_C: torch.Size, | |
fps: Optional[torch.Tensor] = None, | |
h_ntk_factor: Optional[float] = None, | |
w_ntk_factor: Optional[float] = None, | |
t_ntk_factor: Optional[float] = None, | |
): | |
""" | |
Generate embeddings for the given input size. | |
Args: | |
B_T_H_W_C (torch.Size): Input tensor size (Batch, Time, Height, Width, Channels). | |
fps (Optional[torch.Tensor], optional): Frames per second. Defaults to None. | |
h_ntk_factor (Optional[float], optional): Height NTK factor. If None, uses self.h_ntk_factor. | |
w_ntk_factor (Optional[float], optional): Width NTK factor. If None, uses self.w_ntk_factor. | |
t_ntk_factor (Optional[float], optional): Time NTK factor. If None, uses self.t_ntk_factor. | |
Returns: | |
Not specified in the original code snippet. | |
""" | |
h_ntk_factor = h_ntk_factor if h_ntk_factor is not None else self.h_ntk_factor | |
w_ntk_factor = w_ntk_factor if w_ntk_factor is not None else self.w_ntk_factor | |
t_ntk_factor = t_ntk_factor if t_ntk_factor is not None else self.t_ntk_factor | |
h_theta = 10000.0 * h_ntk_factor | |
w_theta = 10000.0 * w_ntk_factor | |
t_theta = 10000.0 * t_ntk_factor | |
h_spatial_freqs = 1.0 / (h_theta**self.dim_spatial_range) | |
w_spatial_freqs = 1.0 / (w_theta**self.dim_spatial_range) | |
temporal_freqs = 1.0 / (t_theta**self.dim_temporal_range) | |
B, T, H, W, _ = B_T_H_W_C | |
uniform_fps = (fps is None) or (fps.min() == fps.max()) | |
assert ( | |
uniform_fps or B == 1 or T == 1 | |
), "For video batch, batch size should be 1 for non-uniform fps. For image batch, T should be 1" | |
assert ( | |
H <= self.max_h and W <= self.max_w | |
), f"Input dimensions (H={H}, W={W}) exceed the maximum dimensions (max_h={self.max_h}, max_w={self.max_w})" | |
half_emb_h = torch.outer(self.seq[:H], h_spatial_freqs) | |
half_emb_w = torch.outer(self.seq[:W], w_spatial_freqs) | |
# apply sequence scaling in temporal dimension | |
if fps is None: # image case | |
assert T == 1, "T should be 1 for image batch." | |
half_emb_t = torch.outer(self.seq[:T], temporal_freqs) | |
else: | |
half_emb_t = torch.outer(self.seq[:T] / fps[:1] * self.base_fps, temporal_freqs) | |
em_T_H_W_D = torch.cat( | |
[ | |
repeat(half_emb_t, "t d -> t h w d", h=H, w=W), | |
repeat(half_emb_h, "h d -> t h w d", t=T, w=W), | |
repeat(half_emb_w, "w d -> t h w d", t=T, h=H), | |
] | |
* 2, | |
dim=-1, | |
) | |
return rearrange(em_T_H_W_D, "t h w d -> (t h w) 1 1 d").float() | |
class LearnablePosEmbAxis(VideoPositionEmb): | |
def __init__( | |
self, | |
*, # enforce keyword arguments | |
interpolation: str, | |
model_channels: int, | |
len_h: int, | |
len_w: int, | |
len_t: int, | |
**kwargs, | |
): | |
""" | |
Args: | |
interpolation (str): we curretly only support "crop", ideally when we need extrapolation capacity, we should adjust frequency or other more advanced methods. they are not implemented yet. | |
""" | |
del kwargs # unused | |
super().__init__() | |
self.interpolation = interpolation | |
assert self.interpolation in ["crop"], f"Unknown interpolation method {self.interpolation}" | |
self.pos_emb_h = nn.Parameter(torch.zeros(len_h, model_channels)) | |
self.pos_emb_w = nn.Parameter(torch.zeros(len_w, model_channels)) | |
self.pos_emb_t = nn.Parameter(torch.zeros(len_t, model_channels)) | |
trunc_normal_(self.pos_emb_h, std=0.02) | |
trunc_normal_(self.pos_emb_w, std=0.02) | |
trunc_normal_(self.pos_emb_t, std=0.02) | |
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]) -> torch.Tensor: | |
B, T, H, W, _ = B_T_H_W_C | |
if self.interpolation == "crop": | |
emb_h_H = self.pos_emb_h[:H] | |
emb_w_W = self.pos_emb_w[:W] | |
emb_t_T = self.pos_emb_t[:T] | |
emb = ( | |
repeat(emb_t_T, "t d-> b t h w d", b=B, h=H, w=W) | |
+ repeat(emb_h_H, "h d-> b t h w d", b=B, t=T, w=W) | |
+ repeat(emb_w_W, "w d-> b t h w d", b=B, t=T, h=H) | |
) | |
assert list(emb.shape)[:4] == [B, T, H, W], f"bad shape: {list(emb.shape)[:4]} != {B, T, H, W}" | |
else: | |
raise ValueError(f"Unknown interpolation method {self.interpolation}") | |
return normalize(emb, dim=-1, eps=1e-6) | |
class MultiviewVideoPositionEmb(nn.Module): | |
def __init__( | |
self, | |
): | |
super().__init__() | |
self.cp_group = None | |
def enable_context_parallel(self, cp_group: ProcessGroup): | |
self.cp_group = cp_group | |
def disable_context_parallel(self): | |
self.cp_group = None | |
def forward(self, x_B_T_H_W_C: torch.Tensor, fps=Optional[torch.Tensor]) -> torch.Tensor: | |
""" | |
With CP, the function assume that the input tensor is already split. It delegates the embedding generation to generate_embeddings function. | |
""" | |
B_T_H_W_C = x_B_T_H_W_C.shape | |
if self.cp_group is not None: | |
cp_ranks = get_process_group_ranks(self.cp_group) | |
cp_size = len(cp_ranks) | |
B, T, H, W, C = B_T_H_W_C | |
B_T_H_W_C = (B, T * cp_size, H, W, C) | |
embeddings = self.generate_embeddings(B_T_H_W_C, fps=fps) | |
if self.cp_group is not None: | |
if isinstance(self, MultiviewVideoRopePosition3DEmb): | |
seq_dim = 1 | |
embeddings = rearrange(embeddings, "(V T) H W D -> V (T H W) 1 1 D", V=self.n_views).float() | |
# rearrange(em_T_H_W_D, "t h w d -> (t h w) 1 1 d").float() | |
embeddings = split_inputs_cp(x=embeddings, seq_dim=seq_dim, cp_group=self.cp_group) | |
embeddings = rearrange(embeddings, "V T 1 1 D -> (V T) 1 1 D", V=self.n_views).float() | |
else: | |
seq_dim = 1 | |
embeddings = rearrange(embeddings, "B (V T) H W C -> (B V) T H W C", V=self.n_views) | |
embeddings = split_inputs_cp(x=embeddings, seq_dim=seq_dim, cp_group=self.cp_group) | |
embeddings = rearrange(embeddings, "(B V) T H W C -> B (V T) H W C", V=self.n_views) | |
else: | |
if isinstance(self, MultiviewVideoRopePosition3DEmb): | |
embeddings = rearrange(embeddings, "t h w d -> (t h w) 1 1 d").float() | |
return embeddings | |
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]): | |
raise NotImplementedError | |
class MultiviewVideoRopePosition3DEmb(MultiviewVideoPositionEmb): | |
def __init__( | |
self, | |
*, # enforce keyword arguments | |
head_dim: int, | |
len_h: int, | |
len_w: int, | |
len_t: int, | |
base_fps: int = 24, | |
h_extrapolation_ratio: float = 1.0, | |
w_extrapolation_ratio: float = 1.0, | |
t_extrapolation_ratio: float = 1.0, | |
n_views: int = 4, | |
**kwargs, # used for compatibility with other positional embeddings; unused in this class | |
): | |
del kwargs | |
super().__init__() | |
self.register_buffer("seq", torch.arange(max(len_h, len_w, len_t), dtype=torch.float)) | |
self.base_fps = base_fps | |
self.max_h = len_h | |
self.max_w = len_w | |
self.n_views = n_views | |
dim = head_dim | |
dim_h = dim // 6 * 2 | |
dim_w = dim_h | |
dim_t = dim - 2 * dim_h | |
assert dim == dim_h + dim_w + dim_t, f"bad dim: {dim} != {dim_h} + {dim_w} + {dim_t}" | |
self.register_buffer( | |
"dim_spatial_range", | |
torch.arange(0, dim_h, 2)[: (dim_h // 2)].float().cuda() / dim_h, | |
persistent=False, | |
) | |
self.register_buffer( | |
"dim_temporal_range", | |
torch.arange(0, dim_t, 2)[: (dim_t // 2)].float().cuda() / dim_t, | |
persistent=False, | |
) | |
self.h_ntk_factor = h_extrapolation_ratio ** (dim_h / (dim_h - 2)) | |
self.w_ntk_factor = w_extrapolation_ratio ** (dim_w / (dim_w - 2)) | |
self.t_ntk_factor = t_extrapolation_ratio ** (dim_t / (dim_t - 2)) | |
def generate_embedding_for_batch( | |
self, | |
B_T_H_W_C: torch.Size, | |
fps: Optional[torch.Tensor] = None, | |
h_ntk_factor: Optional[float] = None, | |
w_ntk_factor: Optional[float] = None, | |
t_ntk_factor: Optional[float] = None, | |
): | |
""" | |
Generate embeddings for the given input size. | |
Args: | |
B_T_H_W_C (torch.Size): Input tensor size (Batch, Time, Height, Width, Channels). | |
fps (Optional[torch.Tensor], optional): Frames per second. Defaults to None. | |
h_ntk_factor (Optional[float], optional): Height NTK factor. If None, uses self.h_ntk_factor. Defaults to None. | |
w_ntk_factor (Optional[float], optional): Width NTK factor. If None, uses self.w_ntk_factor. Defaults to None. | |
t_ntk_factor (Optional[float], optional): Time NTK factor. If None, uses self.t_ntk_factor. Defaults to None. | |
Returns: | |
Not specified in the original code snippet. | |
""" | |
h_ntk_factor = h_ntk_factor if h_ntk_factor is not None else self.h_ntk_factor | |
w_ntk_factor = w_ntk_factor if w_ntk_factor is not None else self.w_ntk_factor | |
t_ntk_factor = t_ntk_factor if t_ntk_factor is not None else self.t_ntk_factor | |
h_theta = 10000.0 * h_ntk_factor | |
w_theta = 10000.0 * w_ntk_factor | |
t_theta = 10000.0 * t_ntk_factor | |
h_spatial_freqs = 1.0 / (h_theta**self.dim_spatial_range) | |
w_spatial_freqs = 1.0 / (w_theta**self.dim_spatial_range) | |
temporal_freqs = 1.0 / (t_theta**self.dim_temporal_range) | |
B, T, H, W, _ = B_T_H_W_C | |
uniform_fps = (fps is None) or (fps.min() == fps.max()) | |
assert uniform_fps # only support uniform fps now | |
assert ( | |
uniform_fps or B == 1 or T == 1 | |
), "For video batch, batch size should be 1 for non-uniform fps. For image batch, T should be 1" | |
assert ( | |
H <= self.max_h and W <= self.max_w | |
), f"Input dimensions (H={H}, W={W}) exceed the maximum dimensions (max_h={self.max_h}, max_w={self.max_w}) configured for positional embedding. Please adjust the input size or increase the maximum dimensions in the model configuration." | |
half_emb_h = torch.outer(self.seq[:H], h_spatial_freqs) | |
half_emb_w = torch.outer(self.seq[:W], w_spatial_freqs) | |
# apply sequence scaling in temporal dimension | |
if fps is None: # image case | |
assert T == 1, "T should be 1 for image batch." | |
half_emb_t = torch.outer(self.seq[:T], temporal_freqs) | |
else: | |
half_emb_t = torch.outer(self.seq[:T] / fps[:1] * self.base_fps, temporal_freqs) | |
em_T_H_W_D = torch.cat( | |
[ | |
repeat(half_emb_t, "t d -> t h w d", h=H, w=W), | |
repeat(half_emb_h, "h d -> t h w d", t=T, w=W), | |
repeat(half_emb_w, "w d -> t h w d", t=T, h=H), | |
] | |
* 2, | |
dim=-1, | |
) | |
return em_T_H_W_D | |
def generate_embeddings( | |
self, | |
B_T_H_W_C: torch.Size, | |
fps: Optional[torch.Tensor] = None, | |
h_ntk_factor: Optional[float] = None, | |
w_ntk_factor: Optional[float] = None, | |
t_ntk_factor: Optional[float] = None, | |
): | |
""" | |
Generate embeddings for the given input size. The camera view dimension is merged in the T dimension | |
Args: | |
B_T_H_W_C (torch.Size): Input tensor size (Batch, Time * Views, Height, Width, Channels). | |
fps (Optional[torch.Tensor], optional): Frames per second. Defaults to None. | |
h_ntk_factor (Optional[float], optional): Height NTK factor. If None, uses self.h_ntk_factor. Defaults to None. | |
w_ntk_factor (Optional[float], optional): Width NTK factor. If None, uses self.w_ntk_factor. Defaults to None. | |
t_ntk_factor (Optional[float], optional): Time NTK factor. If None, uses self.t_ntk_factor. Defaults to None. | |
Returns: | |
Not specified in the original code snippet. | |
""" | |
B, T, H, W, C = B_T_H_W_C | |
single_view_B_T_H_W_C = (B, T // self.n_views, H, W, C) | |
em_T_H_W_D = torch.cat( | |
[ | |
self.generate_embedding_for_batch( | |
single_view_B_T_H_W_C, | |
fps=fps, | |
h_ntk_factor=h_ntk_factor, | |
w_ntk_factor=w_ntk_factor, | |
t_ntk_factor=t_ntk_factor, | |
) | |
for item in range(self.n_views) | |
], | |
dim=0, | |
) | |
return em_T_H_W_D | |
class MultiviewSinCosPosEmbAxis(MultiviewVideoPositionEmb): | |
def __init__( | |
self, | |
*, # enforce keyword arguments | |
interpolation: str, | |
model_channels: int, | |
len_h: int, | |
len_w: int, | |
len_t: int, | |
h_extrapolation_ratio: float = 1.0, | |
w_extrapolation_ratio: float = 1.0, | |
t_extrapolation_ratio: float = 1.0, | |
n_views: int = 4, | |
**kwargs, | |
): | |
""" | |
Args: | |
interpolation (str): we curretly only support "crop", ideally when we need extrapolation capacity, we should adjust frequency or other more advanced methods. they are not implemented yet. | |
""" | |
del kwargs # unused | |
self.n_views = n_views | |
super().__init__() | |
self.interpolation = interpolation | |
assert self.interpolation in ["crop"], f"Unknown interpolation method {self.interpolation}" | |
dim = model_channels | |
dim_h = dim // 6 * 2 | |
dim_w = dim_h | |
dim_t = dim - 2 * dim_h | |
assert dim == dim_h + dim_w + dim_t, f"bad dim: {dim} != {dim_h} + {dim_w} + {dim_t}" | |
# rescale pos id is equivalent to rescale frequency | |
emb_h = get_1d_sincos_pos_embed_from_grid(dim_h, pos=np.arange(len_h) * 1.0 / h_extrapolation_ratio) | |
emb_w = get_1d_sincos_pos_embed_from_grid(dim_w, pos=np.arange(len_w) * 1.0 / w_extrapolation_ratio) | |
emb_t = get_1d_sincos_pos_embed_from_grid(dim_t, pos=np.arange(len_t) * 1.0 / t_extrapolation_ratio) | |
self.register_buffer("pos_emb_h", torch.from_numpy(emb_h).float(), persistent=False) | |
self.register_buffer("pos_emb_w", torch.from_numpy(emb_w).float(), persistent=False) | |
self.register_buffer("pos_emb_t", torch.from_numpy(emb_t).float(), persistent=False) | |
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]) -> torch.Tensor: | |
B, T, H, W, C = B_T_H_W_C | |
single_view_T = T // self.n_views | |
if self.interpolation == "crop": | |
emb_h_H = self.pos_emb_h[:H] | |
emb_w_W = self.pos_emb_w[:W] | |
emb_t_T = self.pos_emb_t[:single_view_T] | |
emb = torch.cat( | |
[ | |
torch.cat( | |
[ | |
repeat(emb_t_T, "t d-> b t h w d", b=B, h=H, w=W), | |
repeat(emb_h_H, "h d-> b t h w d", b=B, t=single_view_T, w=W), | |
repeat(emb_w_W, "w d-> b t h w d", b=B, t=single_view_T, h=H), | |
], | |
dim=-1, | |
) | |
for _ in range(self.n_views) | |
], | |
1, | |
) | |
assert list(emb.shape)[:4] == [B, T, H, W], f"bad shape: {list(emb.shape)[:4]} != {B, T, H, W}" | |
return emb | |
raise ValueError(f"Unknown interpolation method {self.interpolation}") | |