Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""A CLI to export an pre-trained tokenizer checkpoint into a torch.ScriptModule. | |
Usage: | |
python3 -m cosmos_predict1.tokenizer.training.jit_cli \ | |
--ckpt_path=checkpoints/Cosmos-0.1-Tokenizer-CV4x8x8/iter_001000000.pt \ | |
--output_dir=checkpoints/Cosmos-0.1-Tokenizer-CV4x8x8/exported \ | |
--strict_resume \ | |
--config=cosmos_predict1/tokenizer/training/configs/config.py -- \ | |
experiment=CV720_Causal_AE49_4x8x8_cosmos | |
will output: | |
<output-dir>/iter_001000000_ema.jit | |
<output-dir>/iter_001000000_enc.jit | |
<output-dir>/iter_001000000_dec.jit | |
if --reg is specified, it will export the regular model: | |
<output-dir>/iter_001000000_reg.jit | |
<output-dir>/iter_001000000_enc.jit | |
<output-dir>/iter_001000000_dec.jit | |
""" | |
import argparse | |
import importlib | |
import os | |
import torch | |
from loguru import logger as logging | |
from torch._dynamo.eval_frame import OptimizedModule as torch_OptimizedModule | |
from cosmos_predict1.tokenizer.training.checkpointer import TokenizerCheckpointer | |
from cosmos_predict1.utils import callback, ema | |
from cosmos_predict1.utils.config import Config | |
from cosmos_predict1.utils.config_helper import get_config_module, override | |
from cosmos_predict1.utils.lazy_config import instantiate | |
from cosmos_predict1.utils.model import Model | |
parser = argparse.ArgumentParser(description="Export a pre-trained model into a torch.jit.ScriptModule.") | |
parser.add_argument( | |
"--config", type=str, default="cosmos_predict1/tokenizer/training/configs/config.py", help="Path to the config file" | |
) | |
parser.add_argument("--ckpt_path", type=str, default=None, help="The full ckpt path.") | |
parser.add_argument("--credentials", type=str, default="credentials/pdx_vfm_base.secret", help="The credentials file.") | |
parser.add_argument("--strict_resume", action="store_true", help="Enable strictly loading into every network weight.") | |
parser.add_argument("--reg", action="store_true", help="Enable regular model export.") | |
parser.add_argument("--output_dir", type=str, default=None, help="Optional output directory.") | |
parser.add_argument( | |
"opts", | |
help=""" | |
Modify config options at the end of the command. For Yacs configs, use | |
space-separated "PATH.KEY VALUE" pairs. | |
For python-based LazyConfig, use "path.key=value". | |
""".strip(), | |
default=None, | |
nargs=argparse.REMAINDER, | |
) | |
logging.info("Initialize args, cfg from command line arguments ...") | |
args = parser.parse_args() | |
config_module = get_config_module(args.config) | |
config: Config = importlib.import_module(config_module).make_config() | |
config = override(config, args.opts) | |
def _compile_jit_models(model: Model) -> dict[str, torch.ScriptModule]: | |
"""Returns a TorchScript version of REG or EMA models compiled by PyTorch JIT.""" | |
assert hasattr(config, "checkpoint") and hasattr(config.checkpoint, "jit") | |
config_jit = config.checkpoint.jit | |
input_shape = tuple(config_jit.input_shape) | |
example_input = torch.randn(input_shape) | |
dtype = getattr(torch, config_jit.dtype) | |
example_input = example_input.to(config_jit.device).to(dtype) | |
# Make sure jit model output consistenly during consecutive calls | |
# Check here: https://github.com/pytorch/pytorch/issues/74534 | |
torch._C._jit_set_texpr_fuser_enabled(False) | |
with ema.ema_scope(model, enabled=model.config.ema.enabled and not args.reg): | |
_model = model.network.eval() | |
if isinstance(_model, torch_OptimizedModule): | |
_model = _model._orig_mod | |
model_jit = torch.jit.trace(_model, example_input, strict=config_jit.strict) | |
encoder_jit = torch.jit.trace(_model.encoder_jit(), example_input, strict=config_jit.strict) | |
decoder_example = encoder_jit(example_input)[0] | |
decoder_jit = torch.jit.trace(_model.decoder_jit(), decoder_example, strict=config_jit.strict) | |
if args.reg: | |
return {"reg": model_jit, "enc": encoder_jit, "dec": decoder_jit} | |
return {"ema": model_jit, "enc": encoder_jit, "dec": decoder_jit} | |
def _run_export() -> None: | |
"""Exports a torch.nn.Module into a torch.jit.ScriptModule.""" | |
# Check that the config is valid. | |
config.validate() | |
config.checkpoint.load_path = args.ckpt_path | |
config.checkpoint.strict_resume = args.strict_resume | |
config.checkpoint.load_training_state = False | |
config.job.name = os.path.basename(args.output_dir) if args.output_dir else os.path.basename(args.ckpt_path) | |
# Freeze the config. | |
config.freeze() # type: ignore | |
callbacks = callback.CallBackGroup(config=config, trainer=None) | |
checkpointer = TokenizerCheckpointer(config.checkpoint, config.job, callbacks=callbacks) | |
# Create the model. | |
logging.info(f"Instantiate model={config.model.config.network.name} ...") | |
model = instantiate(config.model) | |
model = model.to("cuda", memory_format=config.trainer.memory_format) # type: ignore | |
model.on_train_start(config.trainer.memory_format) | |
logging.info(f"loading weights from {config.checkpoint.load_path}...") | |
_ = checkpointer.load(model) | |
model.eval() | |
ckpt_name = config.checkpoint.load_path.split("/")[-1][:-3] | |
# Drive the output directory. | |
tmp_output_dir = os.path.dirname(config.checkpoint.load_path) | |
output_dir = args.output_dir or tmp_output_dir | |
os.makedirs(output_dir, exist_ok=True) | |
logging.info("Performing JIT compilation ...") | |
jit_models = _compile_jit_models(model) | |
for name, jit_model in jit_models.items(): | |
logging.info(f"Outputing torch.jit: {output_dir}/{ckpt_name}_{name}.jit") | |
torch.jit.save(jit_model, f"{output_dir}/{ckpt_name}_{name}.jit") | |
def main() -> None: | |
_run_export() | |
if __name__ == "__main__": | |
main() | |