Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import annotations | |
import os | |
import threading | |
from typing import TYPE_CHECKING | |
import torch | |
from cosmos_predict1.utils import callback, distributed, log, misc | |
from cosmos_predict1.utils.model import Model | |
if TYPE_CHECKING: | |
from cosmos_predict1.utils.config import CheckpointConfig, JobConfig | |
class Checkpointer: | |
"""The checkpointer class. Supports checkpoint saving/loading to local disk.""" | |
def __init__(self, config_checkpoint: CheckpointConfig, config_job: JobConfig, callbacks: callback.CallBackGroup): | |
"""Constructor of the checkpointer. | |
Args: | |
config_checkpoint (CheckpointConfig): The config object for the checkpointer. | |
""" | |
# Set the callback functions. | |
self.callbacks = callbacks | |
self.checkpoint_dir_local = f"{config_job.path_local}/checkpoints" | |
self.strict_resume = config_checkpoint.strict_resume | |
self.load_path = config_checkpoint.load_path or None | |
self.load_training_state = config_checkpoint.load_training_state | |
self.only_load_scheduler_state = config_checkpoint.only_load_scheduler_state | |
self.save_thread = None | |
def save( | |
self, | |
model: Model, | |
optimizer: torch.optim.Optimizer, | |
scheduler: torch.optim.lr_scheduler.LRScheduler, | |
grad_scaler: torch.amp.GradScaler, | |
iteration: int, | |
) -> None: | |
"""Save network weights, optimizer parameters, scheduler parameters to a checkpoint. | |
Args: | |
model (Model): The PyTorch model. | |
optimizer (torch.optim.Optimizer): The model optimizer. | |
scheduler (torch.optim.lr_scheduler.LRScheduler): The optimization scheduler. | |
grad_scaler (torch.amp.GradScaler): The gradient scaler (for mixed precision training). | |
iteration (int): Current iteration number. | |
""" | |
self.callbacks.on_save_checkpoint_start(model, iteration) | |
checkpoint_file = f"iter_{iteration:09}.pt" | |
if distributed.get_rank() == 0: | |
state_dict = dict( | |
model=model.state_dict(), | |
optimizer=optimizer.state_dict(), | |
scheduler=scheduler.state_dict(), | |
grad_scaler=grad_scaler.state_dict(), | |
iteration=iteration, | |
) | |
state_dict = misc.to(state_dict, device="cpu") | |
self.callbacks.on_save_checkpoint(model, state_dict=state_dict) | |
# Wait for previous saver thread to end. | |
if self.save_thread: | |
self.save_thread.join() | |
# Run the checkpoint saver in a separate thread. | |
self.save_thread = threading.Thread( | |
target=self._save_worker_local, | |
daemon=False, | |
args=(state_dict, checkpoint_file, distributed.get_rank()), | |
) | |
self.save_thread.start() | |
# Note: Checkpoints are saved on a separate thread and this callback is not accurate. | |
# Please check logs from on_save_checkpoint_success() for better accuracy | |
self.callbacks.on_save_checkpoint_end(model=None, iteration=iteration) | |
def _save_worker_local(self, state_dict: dict[str, torch.Tensor], checkpoint_file: str, rank: int = 0) -> None: | |
"""Worker to save checkpoint to local disk, spawned with a child thread (runs in parallel with the training). | |
Args: | |
state_dict (dict[str, torch.Tensor]): The state dict of the model/optimizer/scheduler. | |
checkpoint_file (str): The file name of the model checkpoint. | |
rank (int): GPU device (default: 0). | |
""" | |
checkpoint_path = os.path.join(self.checkpoint_dir_local, checkpoint_file) | |
os.makedirs(self.checkpoint_dir_local, exist_ok=True) | |
try: | |
torch.save(state_dict, checkpoint_path) | |
if rank == 0: | |
self._write_latest_checkpoint_file(checkpoint_file) | |
log.success(f"Saved checkpoint (local): {checkpoint_path}") | |
iteration = int(checkpoint_file.replace("iter_", "").replace(".pt", "")) | |
self.callbacks.on_save_checkpoint_success(iteration=iteration) | |
except Exception as e: # noqa: BLE001 | |
log.exception(f"Checkpoint failed to save (local): {e}") | |
def load( | |
self, | |
model: Model, | |
optimizer: torch.optim.Optimizer | None = None, | |
scheduler: torch.optim.lr_scheduler.LRScheduler | None = None, | |
grad_scaler: torch.amp.GradScaler | None = None, | |
) -> int: | |
"""Load network weights and optimizer states from a checkpoint in a single process. | |
The priority of the checkpoint loading logic is: | |
1. Attempt to resume training if possible by looking for latest_checkpoint.txt under the same name. | |
2. If no latest checkpoint were found, it loads the model weights specified by config_checkpoint.path. | |
- This is typically used for inference mode. | |
- If config_checkpoint.load_optimizer_state is True, then also load the optimizer and scheduler states. | |
3. If none of the above, randomly initialize the model parameters and train from scratch. | |
Args: | |
model (Model): The PyTorch model. | |
optimizer (torch.optim.Optimizer | None): The model optimizer (default: None). | |
scheduler (torch.optim.lr_scheduler.LRScheduler | None): The optimization scheduler (default: None). | |
grad_scaler (torch.amp.GradScaler | None): The gradient scaler (for mixed precision training). | |
Returns: | |
iteration (int): the iteration number to start/resume from. | |
""" | |
self.callbacks.on_load_checkpoint_start(model) | |
latest_checkpoint_file = self._read_latest_checkpoint_file() | |
if latest_checkpoint_file is not None: | |
# 1. Resume training from latest_checkpoint.txt under the same name. | |
checkpoint_dir = self.checkpoint_dir_local | |
checkpoint_path = os.path.join(checkpoint_dir, latest_checkpoint_file) | |
resume = True | |
only_resume_scheduler = True | |
else: | |
if self.load_path: | |
# 2. Load the module weights specified by config_checkpoint.path. | |
checkpoint_path = self.load_path | |
resume = self.load_training_state | |
only_resume_scheduler = self.only_load_scheduler_state | |
else: | |
# 3. Randomly initialize the model parameters and train from scratch. | |
checkpoint_path = None | |
resume = False | |
only_resume_scheduler = False | |
# Load checkpoint. | |
if checkpoint_path is not None: | |
self._check_checkpoint_exists(checkpoint_path) | |
log.info(f"Loading checkpoint (local): {checkpoint_path}") | |
state_dict = torch.load(checkpoint_path, map_location=lambda storage, loc: storage, weights_only=False) | |
log.success(f"Complete loading checkpoint (local): {checkpoint_path}") | |
self.callbacks.on_load_checkpoint(model, state_dict=state_dict) | |
# Load the state dicts. | |
log.info("- Loading the model...") | |
if "model" in state_dict: | |
model.load_state_dict(state_dict["model"], strict=self.strict_resume) | |
else: | |
model.load_state_dict(state_dict, strict=self.strict_resume) | |
if resume or only_resume_scheduler: | |
iteration = state_dict["iteration"] | |
assert scheduler | |
log.info("- Loading the scheduler...") | |
scheduler.load_state_dict(state_dict["scheduler"]) | |
scheduler.last_epoch = iteration | |
else: | |
iteration = 0 | |
if resume: | |
assert optimizer | |
log.info("- Loading the optimizer...") | |
optimizer.load_state_dict(state_dict["optimizer"]) | |
log.info("- Loading the gradient scaler...") | |
grad_scaler.load_state_dict(state_dict["grad_scaler"]) | |
log.success(f"Done with loading the checkpoint (iteration {iteration}).") | |
else: | |
log.success("Done with loading the checkpoint.") | |
else: | |
# Checkpoint not found and not specified. We will train everything from scratch. | |
iteration = 0 | |
log.info("Training from scratch.") | |
torch.cuda.empty_cache() | |
self.callbacks.on_load_checkpoint_end(model) | |
return iteration | |
def _read_latest_checkpoint_file(self) -> str | None: | |
"""Get the file name of the latest saved checkpoint. If it doesn't exist, return None. | |
Returns: | |
checkpoint_file (str | None): file name of the latest saved checkpoint. | |
""" | |
checkpoint_file = None | |
latest_path = os.path.join(self.checkpoint_dir_local, "latest_checkpoint.txt") | |
if os.path.isfile(latest_path): | |
checkpoint_file = open(latest_path).read().strip() | |
return checkpoint_file | |
def _write_latest_checkpoint_file(self, checkpoint_file: str) -> None: | |
"""Track the file name of the latest saved checkpoint. | |
Args: | |
checkpoint_file (str): file name of the latest saved checkpoint. | |
""" | |
content = f"{checkpoint_file}\n" | |
latest_path = os.path.join(self.checkpoint_dir_local, "latest_checkpoint.txt") | |
with open(latest_path, "w") as file: | |
file.write(content) | |
def _check_checkpoint_exists(self, checkpoint_path: str) -> None: | |
"""If the file checkpoint_path does not exist, raise an error. | |
Args: | |
checkpoint_path (str): full path to the checkpoint. | |
""" | |
if not os.path.exists(checkpoint_path): | |
raise FileNotFoundError(f"File not found (local): {checkpoint_path}") | |
def finalize(self) -> None: | |
"""Finalize the checkpointer.""" | |
if self.save_thread: | |
self.save_thread.join() | |