File size: 23,580 Bytes
f7336c1
1354e82
f7336c1
 
 
 
 
dbafd34
88df769
186da5b
 
 
da4aebc
186da5b
 
 
 
 
 
88df769
f7336c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5017c3c
f7336c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbafd34
f7336c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbafd34
f7336c1
dbafd34
f7336c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86d8605
f7336c1
7877974
 
86d8605
7877974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7336c1
7877974
 
 
a57bf8b
7877974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7336c1
7877974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7336c1
7877974
 
a57bf8b
7877974
f7336c1
7877974
 
0416e0e
 
 
 
 
 
 
f7336c1
186da5b
dbafd34
 
52b5462
186da5b
 
dbafd34
186da5b
52b5462
186da5b
 
 
52b5462
186da5b
dbafd34
 
186da5b
 
 
da266b5
186da5b
 
 
 
 
52b5462
186da5b
 
 
 
 
 
 
52b5462
186da5b
 
52b5462
2649278
6dee816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52b5462
 
186da5b
52b5462
 
186da5b
dbafd34
52b5462
186da5b
 
dbafd34
186da5b
dbafd34
2649278
186da5b
dbafd34
186da5b
 
 
 
 
dbafd34
186da5b
 
 
 
 
52b5462
186da5b
dbafd34
186da5b
 
dbafd34
 
 
 
186da5b
 
 
 
 
 
 
 
dbafd34
186da5b
 
dbafd34
 
186da5b
 
dbafd34
 
 
186da5b
 
2649278
dbafd34
2649278
dbafd34
2649278
9f1ae40
dbafd34
 
 
cdf05c6
ee14428
320d56f
 
ee14428
2649278
c138b4c
dbafd34
 
 
 
 
 
 
 
c138b4c
dbafd34
 
c138b4c
dbafd34
 
 
cdf05c6
dbafd34
 
c138b4c
dbafd34
 
c138b4c
dbafd34
cdf05c6
 
88df769
 
6808312
88df769
6808312
88df769
2649278
dbafd34
ac6986a
 
 
 
 
 
 
 
 
 
dbafd34
ac6986a
dbafd34
ac6986a
dbafd34
ac6986a
dbafd34
ac6986a
dbafd34
ac6986a
04ae857
ac6986a
dbafd34
ac6986a
dbafd34
ac6986a
1435d11
ac6986a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbafd34
ac6986a
dbafd34
ac6986a
dbafd34
 
5216c52
86d8605
186da5b
dbafd34
186da5b
dbafd34
 
 
 
 
 
 
 
 
186da5b
dbafd34
 
 
 
 
 
 
2649278
dbafd34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186da5b
dbafd34
 
 
 
 
 
 
 
 
 
 
 
 
52b5462
186da5b
7034732
52b5462
d742a71
cdf05c6
d742a71
52b5462
d742a71
141db3c
d742a71
 
 
 
 
 
 
52b5462
d742a71
ee14428
d742a71
 
 
 
 
ee14428
86d8605
1ad0756
86d8605
edbef61
3e76623
f7336c1
 
 
 
 
 
 
 
 
 
7034732
86d8605
5216c52
f7336c1
 
 
8346bd0
f7336c1
 
 
1fc77ce
f7336c1
ad895a9
86d8605
5216c52
f7336c1
186da5b
a57bf8b
 
f7336c1
 
 
 
5216c52
f7336c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
import os
import shutil
import sys
import warnings
import random
import time
import logging
import fal_client
import base64
import numpy as np
import math
import scipy
import requests
import torch
import torchvision
import gradio as gr
import argparse
import spaces
from PIL import Image, ImageFilter, ImageOps, ImageDraw, ImageFont
from io import BytesIO
from typing import Dict, List, Tuple, Union, Optional

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)

# Download model weights only if they don't exist
if not os.path.exists("groundingdino_swint_ogc.pth"):
    os.system("wget https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth")

if not os.path.exists("sam_hq_vit_l.pth"):
    os.system("wget https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_l.pth")

# Add paths
sys.path.append(os.path.join(os.getcwd(), "GroundingDINO"))
sys.path.append(os.path.join(os.getcwd(), "sam-hq"))
warnings.filterwarnings("ignore")

# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap

# segment anything
from segment_anything import build_sam_vit_l, SamPredictor 

# Constants
CONFIG_FILE = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
GROUNDINGDINO_CHECKPOINT = "groundingdino_swint_ogc.pth"
SAM_CHECKPOINT = 'sam_hq_vit_l.pth'
OUTPUT_DIR = "outputs"

# Global variables for model caching
_models = {
    'groundingdino': None,
    'sam_predictor': None
}

# Enable GPU if available with proper error handling
try:
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    logger.info(f"Using device: {device}")
except Exception as e:
    logger.warning(f"Error detecting GPU, falling back to CPU: {e}")
    device = 'cpu'


class ModelManager:
    """Manages model loading, unloading, and provides error handling"""
    
    @staticmethod
    def load_model(model_name: str) -> None:
        """Load a model if not already loaded"""
        try:
            if model_name == 'groundingdino' and _models['groundingdino'] is None:
                logger.info("Loading GroundingDINO model...")
                start_time = time.time()
                
                if not os.path.exists(GROUNDINGDINO_CHECKPOINT):
                    raise FileNotFoundError(f"GroundingDINO checkpoint not found at {GROUNDINGDINO_CHECKPOINT}")
                
                args = SLConfig.fromfile(CONFIG_FILE)
                args.device = device
                model = build_model(args)
                checkpoint = torch.load(GROUNDINGDINO_CHECKPOINT, map_location="cpu")
                load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
                logger.info(f"GroundingDINO load result: {load_res}")
                _ = model.eval()
                _models['groundingdino'] = model
                
                logger.info(f"GroundingDINO model loaded in {time.time() - start_time:.2f} seconds")
                
            elif model_name == 'sam' and _models['sam_predictor'] is None:
                logger.info("Loading SAM-HQ model...")
                start_time = time.time()
                
                if not os.path.exists(SAM_CHECKPOINT):
                    raise FileNotFoundError(f"SAM checkpoint not found at {SAM_CHECKPOINT}")
                
                sam = build_sam_vit_l(checkpoint=SAM_CHECKPOINT)
                sam.to(device=device)
                _models['sam_predictor'] = SamPredictor(sam)
                
                logger.info(f"SAM-HQ model loaded in {time.time() - start_time:.2f} seconds")

                
        except Exception as e:
            logger.error(f"Error loading {model_name} model: {e}")
            raise RuntimeError(f"Failed to load {model_name} model: {e}")
    
    @staticmethod
    def get_model(model_name: str):
        """Get a model, loading it if necessary"""
        if model_name not in _models or _models[model_name] is None:
            ModelManager.load_model(model_name)
        return _models[model_name]
    
    @staticmethod
    def unload_model(model_name: str) -> None:
        """Unload a model to free memory"""
        if model_name in _models and _models[model_name] is not None:
            logger.info(f"Unloading {model_name} model")
            _models[model_name] = None
            if device == 'cuda':
                torch.cuda.empty_cache()


def transform_image(image_pil: Image.Image) -> torch.Tensor:
    """Transform PIL image for GroundingDINO"""
    transform = T.Compose([
        T.RandomResize([800], max_size=1333),
        T.ToTensor(),
        T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ])
    image, _ = transform(image_pil, None)  # 3, h, w
    return image


def get_grounding_output(
    image: torch.Tensor, 
    caption: str, 
    box_threshold: float, 
    text_threshold: float, 
    with_logits: bool = True
) -> Tuple[torch.Tensor, torch.Tensor, List[str]]:
    """Run GroundingDINO to get bounding boxes from text prompt"""
    try:
        model = ModelManager.get_model('groundingdino')
        
        # Format caption
        caption = caption.lower().strip()
        if not caption.endswith("."):
            caption = caption + "."

        with torch.no_grad():
            outputs = model(image[None], captions=[caption])
            
        logits = outputs["pred_logits"].cpu().sigmoid()[0]  # (nq, 256)
        boxes = outputs["pred_boxes"].cpu()[0]  # (nq, 4)

        # Filter output
        logits_filt = logits.clone()
        boxes_filt = boxes.clone()
        filt_mask = logits_filt.max(dim=1)[0] > box_threshold
        logits_filt = logits_filt[filt_mask]  # num_filt, 256
        boxes_filt = boxes_filt[filt_mask]  # num_filt, 4

        # Get phrases
        tokenizer = model.tokenizer
        tokenized = tokenizer(caption)
        pred_phrases = []
        scores = []
        
        for logit, box in zip(logits_filt, boxes_filt):
            pred_phrase = get_phrases_from_posmap(
                logit > text_threshold, tokenized, tokenizer)
            if with_logits:
                pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
            else:
                pred_phrases.append(pred_phrase)
            scores.append(logit.max().item())

        return boxes_filt, torch.Tensor(scores), pred_phrases
    
    except Exception as e:
        logger.error(f"Error in grounding output: {e}")
        # Return empty results instead of crashing
        return torch.Tensor([]), torch.Tensor([]), []


def draw_mask(mask: np.ndarray, draw: ImageDraw.Draw) -> None:
    """Draw mask on image"""

    color = (255, 255, 255, 255)

    nonzero_coords = np.transpose(np.nonzero(mask))
    for coord in nonzero_coords:
        draw.point(coord[::-1], fill=color)


def draw_box(box: torch.Tensor, draw: ImageDraw.Draw, label: Optional[str]) -> None:
    """Draw bounding box on image"""
    color = tuple(np.random.randint(0, 255, size=3).tolist())
    draw.rectangle(((box[0], box[1]), (box[2], box[3])), outline=color, width=2)

    if label:
        font = ImageFont.load_default()
        if hasattr(font, "getbbox"):
            bbox = draw.textbbox((box[0], box[1]), str(label), font)
        else:
            w, h = draw.textsize(str(label), font)
            bbox = (box[0], box[1], w + box[0], box[1] + h)
        draw.rectangle(bbox, fill=color)
        draw.text((box[0], box[1]), str(label), fill="white")


def run_grounded_sam(input_image, product):
    """Main function to run GroundingDINO and SAM-HQ"""
    # Create output directory
    os.makedirs(OUTPUT_DIR, exist_ok=True)
    text_prompt = product
    task_type = 'text'
    box_threshold = 0.3
    text_threshold = 0.25
    iou_threshold = 0.8
    hq_token_only = True
    
    # Process input image
    if isinstance(input_image, dict):
        # Input from gradio sketch component
        scribble = np.array(input_image["mask"])
        image_pil = input_image["image"].convert("RGB")
    else:
        # Direct image input
        image_pil = input_image.convert("RGB") if input_image else None
        scribble = None
        
    if image_pil is None:
        logger.error("No input image provided")
        return [Image.new('RGB', (400, 300), color='gray')]

    # Transform image for GroundingDINO
    transformed_image = transform_image(image_pil)
    
    # Load models as needed
    ModelManager.load_model('groundingdino')
    size = image_pil.size
    H, W = size[1], size[0]

    # Run GroundingDINO with provided text
    boxes_filt, scores, pred_phrases = get_grounding_output(
        transformed_image, text_prompt, box_threshold, text_threshold
    )

    if boxes_filt is not None:
        # Scale boxes to image dimensions
        for i in range(boxes_filt.size(0)):
            boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
            boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
            boxes_filt[i][2:] += boxes_filt[i][:2]
        
        # Apply non-maximum suppression if we have multiple boxes
        if boxes_filt.size(0) > 1:
            logger.info(f"Before NMS: {boxes_filt.shape[0]} boxes")
            nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
            boxes_filt = boxes_filt[nms_idx]
            pred_phrases = [pred_phrases[idx] for idx in nms_idx]
            logger.info(f"After NMS: {boxes_filt.shape[0]} boxes")
    
    # Load SAM model
    ModelManager.load_model('sam')
    sam_predictor = ModelManager.get_model('sam_predictor')
    
    # Set image for SAM
    image = np.array(image_pil)
    sam_predictor.set_image(image)
    
    # Run SAM 
    # Use boxes for these task types
    if boxes_filt.size(0) == 0:
        logger.warning("No boxes detected")
        return [image_pil, Image.new('RGBA', size, color=(0, 0, 0, 0))]
    
    transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)
    
    masks, _, _ = sam_predictor.predict_torch(
        point_coords=None,
        point_labels=None,
        boxes=transformed_boxes,
        multimask_output=False,
        hq_token_only=hq_token_only,
    )
    
    # Create mask image
    mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0))
    mask_draw = ImageDraw.Draw(mask_image)
    
    # Draw masks
    for mask in masks:
        draw_mask(mask[0].cpu().numpy(), mask_draw)
    
    # Draw boxes and points on original image
    image_draw = ImageDraw.Draw(image_pil)

    for box, label in zip(boxes_filt, pred_phrases):
        draw_box(box, image_draw, label)

    return mask_image
    
    # except Exception as e:
    #     logger.error(f"Error in run_grounded_sam: {e}")
        # # Return original image on error
        # if isinstance(input_image, dict) and "image" in input_image:
        #     return [input_image["image"], Image.new('RGBA', input_image["image"].size, color=(0, 0, 0, 0))]
        # elif isinstance(input_image, Image.Image):
        #     return [input_image, Image.new('RGBA', input_image.size, color=(0, 0, 0, 0))]
        # else:
        #     return [Image.new('RGB', (400, 300), color='gray'), Image.new('RGBA', (400, 300), color=(0, 0, 0, 0))]

def split_image_with_alpha(image):
    image = image.convert("RGB")
    return image

def gaussian_blur(image, radius=10):
    """Apply Gaussian blur to image."""
    blurred = image.filter(ImageFilter.GaussianBlur(radius=10))
    return blurred

def invert_image(image):
    img_inverted = ImageOps.invert(image)
    return img_inverted

def expand_mask(mask, expand, tapered_corners):
    # Ensure mask is in grayscale (mode 'L')
    mask = mask.convert("L")
    
    # Convert to NumPy array
    mask_np = np.array(mask)

    # Define kernel
    c = 0 if tapered_corners else 1
    kernel = np.array([[c, 1, c],
                       [1, 1, 1],
                       [c, 1, c]], dtype=np.uint8)

    # Perform dilation or erosion based on expand value
    if expand > 0:
        for _ in range(expand):
            mask_np = scipy.ndimage.grey_dilation(mask_np, footprint=kernel)
    elif expand < 0:
        for _ in range(abs(expand)):
            mask_np = scipy.ndimage.grey_erosion(mask_np, footprint=kernel)

    # Convert back to PIL image
    return Image.fromarray(mask_np, mode="L")

def image_blend_by_mask(image_a, image_b, mask, blend_percentage):
    # Ensure images have the same size and mode
    image_a = image_a.convert('RGB')
    image_b = image_b.convert('RGB')
    mask = mask.convert('L')
    
    # Resize images if they don't match
    if image_a.size != image_b.size:
        image_b = image_b.resize(image_a.size, Image.LANCZOS)
    
    # Ensure mask has the same size
    if mask.size != image_a.size:
        mask = mask.resize(image_a.size, Image.LANCZOS)
    
    # Invert mask
    mask = ImageOps.invert(mask)

    # Mask image
    masked_img = Image.composite(image_a, image_b, mask)

    # Blend image
    blend_mask = Image.new(mode="L", size=image_a.size,
                           color=(round(blend_percentage * 255)))
    blend_mask = ImageOps.invert(blend_mask)
    img_result = Image.composite(image_a, masked_img, blend_mask)

    del image_a, image_b, blend_mask, mask

    return img_result

def blend_images(image_a, image_b, blend_percentage):
    """Blend img_b over image_a using the normal mode with a blend percentage."""
    img_a = image_a.convert("RGBA")
    img_b = image_b.convert("RGBA")

    # Blend img_b over img_a using alpha_composite (normal blend mode)
    out_image = Image.alpha_composite(img_a, img_b)

    out_image = out_image.convert("RGB")

    # Create blend mask
    blend_mask = Image.new("L", image_a.size, round(blend_percentage * 255))
    blend_mask = ImageOps.invert(blend_mask)  # Invert the mask

    # Apply composite blend
    result = Image.composite(image_a, out_image, blend_mask)
    return result

def apply_image_levels(image, black_level, mid_level, white_level):
    levels = AdjustLevels(black_level, mid_level, white_level)
    adjusted_image = levels.adjust(image)
    return adjusted_image

class AdjustLevels:
    def __init__(self, min_level, mid_level, max_level):
        self.min_level = min_level
        self.mid_level = mid_level
        self.max_level = max_level

    def adjust(self, im):

        im_arr = np.array(im).astype(np.float32)
        im_arr[im_arr < self.min_level] = self.min_level
        im_arr = (im_arr - self.min_level) * \
            (255 / (self.max_level - self.min_level))
        im_arr = np.clip(im_arr, 0, 255)

        # mid-level adjustment
        gamma = math.log(0.5) / math.log((self.mid_level - self.min_level) / (self.max_level - self.min_level))
        im_arr = np.power(im_arr / 255, gamma) * 255

        im_arr = im_arr.astype(np.uint8)

        im = Image.fromarray(im_arr)

        return im

def resize_image(image, scaling_factor=1):
    image = image.resize((int(image.width * scaling_factor), 
        int(image.height * scaling_factor)))
    return image

def upscale_image(image, size):
    new_image = image.resize((size, size), Image.LANCZOS)
    return new_image

def resize_to_square(image, size=1024):

    # Load image if a file path is provided
    if isinstance(image, str):
        img = Image.open(image).convert("RGBA")
    else:
        img = image.convert("RGBA")  # If already an Image object

    # Resize while maintaining aspect ratio
    img.thumbnail((size, size), Image.LANCZOS)

    # Create a transparent square canvas
    square_img = Image.new("RGBA", (size, size), (0, 0, 0, 0))

    # Calculate the position to paste the resized image (centered)
    x_offset = (size - img.width) // 2
    y_offset = (size - img.height) // 2

    # Extract the alpha channel as a mask
    mask = img.split()[3] if img.mode == "RGBA" else None

    # Paste the resized image onto the square canvas with the correct transparency mask
    square_img.paste(img, (x_offset, y_offset), mask)

    return square_img


def encode_image(image):
    buffer = BytesIO()
    image.save(buffer, format="PNG")
    encoded_image = base64.b64encode(buffer.getvalue()).decode("utf-8")
    return f"data:image/png;base64,{encoded_image}"

def generate_ai_bg(input_img, prompt):
    # input_img = resize_image(input_img, 0.01)
    hf_input_img = encode_image(input_img)

    handler = fal_client.submit(
        "fal-ai/iclight-v2",
        arguments={
            "prompt": prompt,
            "image_url": hf_input_img
        },
        webhook_url="https://optional.webhook.url/for/results",
    )

    request_id = handler.request_id

    status = fal_client.status("fal-ai/iclight-v2", request_id, with_logs=True)

    result = fal_client.result("fal-ai/iclight-v2", request_id)

    relight_img_path = result['images'][0]['url']

    response = requests.get(relight_img_path, stream=True)

    relight_img = Image.open(BytesIO(response.content)).convert("RGBA")

    # from gradio_client import Client, handle_file

    # client = Client("lllyasviel/iclight-v2-vary")

    # result = client.predict(
    #         input_fg=handle_file(input_img),
    #         bg_source="None",
    #         prompt=prompt,
    #         image_width=256,
    #         image_height=256,
    #         num_samples=1,
    #         seed=12345,
    #         steps=25,
    #         n_prompt="lowres, bad anatomy, bad hands, cropped, worst quality",
    #         cfg=2,
    #         gs=5,
    #         enable_hr_fix=True,
    #         hr_downscale=0.5,
    #         lowres_denoise=0.8,
    #         highres_denoise=0.99,
    #         api_name="/process"
    # )
    # print(result)

    # relight_img_path = result[0][0]['image']

    # relight_img = Image.open(relight_img_path).convert("RGBA")

    return relight_img

def blend_details(input_image, relit_image, masked_image, product, scaling_factor=1):

    # input_image = resize_image(input_image)

    # relit_image = resize_image(relit_image)

    # masked_image = resize_image(masked_image)

    masked_image_rgb = split_image_with_alpha(masked_image)
    masked_image_blurred = gaussian_blur(masked_image_rgb, radius=10)
    grow_mask = expand_mask(masked_image_blurred, -15, True)

    # grow_mask.save("output/grow_mask.png")

    # Split images and get RGB channels
    input_image_rgb = split_image_with_alpha(input_image)
    input_blurred = gaussian_blur(input_image_rgb, radius=10)
    input_inverted = invert_image(input_image_rgb)

    # input_blurred.save("output/input_blurred.png")
    # input_inverted.save("output/input_inverted.png")
        
    # Add blurred and inverted images
    input_blend_1 = blend_images(input_inverted, input_blurred, blend_percentage=0.5)
    input_blend_1_inverted = invert_image(input_blend_1)
    input_blend_2 = blend_images(input_blurred, input_blend_1_inverted, blend_percentage=1.0)

    # input_blend_2.save("output/input_blend_2.png")

    # Process relit image
    relit_image_rgb = split_image_with_alpha(relit_image)
    relit_blurred = gaussian_blur(relit_image_rgb, radius=10)
    relit_inverted = invert_image(relit_image_rgb)

    # relit_blurred.save("output/relit_blurred.png")
    # relit_inverted.save("output/relit_inverted.png")
    
    # Add blurred and inverted relit images
    relit_blend_1 = blend_images(relit_inverted, relit_blurred, blend_percentage=0.5)
    relit_blend_1_inverted = invert_image(relit_blend_1)
    relit_blend_2 = blend_images(relit_blurred, relit_blend_1_inverted, blend_percentage=1.0)

    # relit_blend_2.save("output/relit_blend_2.png")

    high_freq_comp = image_blend_by_mask(relit_blend_2, input_blend_2, grow_mask, blend_percentage=1.0)

    # high_freq_comp.save("output/high_freq_comp.png")

    comped_image = blend_images(relit_blurred, high_freq_comp, blend_percentage=0.65)

    # comped_image.save("output/comped_image.png")

    final_image = apply_image_levels(comped_image, black_level=83, mid_level=128, white_level=172)

    # final_image.save("output/final_image.png")

    return final_image

@spaces.GPU
def generate_image(input_image_path, prompt):

    # resized_input_img = resize_to_square(input_image_path, 256)

    # resized_input_img_path = '/tmp/gradio/resized_input_img.png'

    # resized_input_img.convert("RGBA").save(resized_input_img_path, "PNG")

    # ai_gen_image = generate_ai_bg(resized_input_img, prompt)

    # upscaled_ai_image = upscale_image(ai_gen_image, 8192)

    # upscaled_input_image = upscale_image(resized_input_img, 8192)

    # mask_input_image = run_grounded_sam(upscaled_input_image)

    # final_image = blend_details(upscaled_input_image, upscaled_ai_image, mask_input_image)

    # FAL

    resized_input_img = resize_to_square(input_image_path, 1024)

    ai_gen_image = generate_ai_bg(resized_input_img, prompt)

    mask_input_image = run_grounded_sam(resized_input_img, product)

    final_image = blend_details(resized_input_img, ai_gen_image, mask_input_image, product)

    return final_image

def create_ui():
    """Create Gradio UI for CarViz demo"""
    with gr.Blocks(title="CarViz Demo") as block:
        gr.Markdown("""
        # CarViz
        """)

        with gr.Row():
            with gr.Column():
                input_image_path = gr.Image(type="filepath", label="image")
                product = gr.Textbox(label="Product", placeholder="Enter what your product is here...")
                prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
                run_button = gr.Button(value='Run')

            with gr.Column():
                output_image = gr.Image(label="Generated Image")
        
        # Run button
        run_button.click(
            fn=generate_image, 
            inputs=[
                input_image_path,
                product,
                prompt
            ], 
            outputs=[output_image]
        )     
 
    return block


if __name__ == "__main__":
    parser = argparse.ArgumentParser("Carviz demo", add_help=True)
    parser.add_argument("--debug", action="store_true", help="using debug mode")
    parser.add_argument("--share", action="store_true", help="share the app")
    parser.add_argument('--no-gradio-queue', action="store_true", help="disable gradio queue")
    parser.add_argument('--port', type=int, default=7860, help="port to run the app")
    parser.add_argument('--host', type=str, default="0.0.0.0", help="host to run the app")
    args = parser.parse_args()

    logger.info(f"Starting CarViz demo with args: {args}")
    
    # Check for model files
    if not os.path.exists(GROUNDINGDINO_CHECKPOINT):
        logger.warning(f"GroundingDINO checkpoint not found at {GROUNDINGDINO_CHECKPOINT}")
    if not os.path.exists(SAM_CHECKPOINT):
        logger.warning(f"SAM-HQ checkpoint not found at {SAM_CHECKPOINT}")
    
    # Create app
    block = create_ui()
    if not args.no_gradio_queue:
        block = block.queue()
    
    # Launch app
    try:
        block.launch(
            debug=args.debug, 
            share=args.share, 
            show_error=True,
            server_name=args.host,
            server_port=args.port
        )
    except Exception as e:
        logger.error(f"Error launching app: {e}")