Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,580 Bytes
f7336c1 1354e82 f7336c1 dbafd34 88df769 186da5b da4aebc 186da5b 88df769 f7336c1 5017c3c f7336c1 dbafd34 f7336c1 dbafd34 f7336c1 dbafd34 f7336c1 86d8605 f7336c1 7877974 86d8605 7877974 f7336c1 7877974 a57bf8b 7877974 f7336c1 7877974 f7336c1 7877974 a57bf8b 7877974 f7336c1 7877974 0416e0e f7336c1 186da5b dbafd34 52b5462 186da5b dbafd34 186da5b 52b5462 186da5b 52b5462 186da5b dbafd34 186da5b da266b5 186da5b 52b5462 186da5b 52b5462 186da5b 52b5462 2649278 6dee816 52b5462 186da5b 52b5462 186da5b dbafd34 52b5462 186da5b dbafd34 186da5b dbafd34 2649278 186da5b dbafd34 186da5b dbafd34 186da5b 52b5462 186da5b dbafd34 186da5b dbafd34 186da5b dbafd34 186da5b dbafd34 186da5b dbafd34 186da5b 2649278 dbafd34 2649278 dbafd34 2649278 9f1ae40 dbafd34 cdf05c6 ee14428 320d56f ee14428 2649278 c138b4c dbafd34 c138b4c dbafd34 c138b4c dbafd34 cdf05c6 dbafd34 c138b4c dbafd34 c138b4c dbafd34 cdf05c6 88df769 6808312 88df769 6808312 88df769 2649278 dbafd34 ac6986a dbafd34 ac6986a dbafd34 ac6986a dbafd34 ac6986a dbafd34 ac6986a dbafd34 ac6986a 04ae857 ac6986a dbafd34 ac6986a dbafd34 ac6986a 1435d11 ac6986a dbafd34 ac6986a dbafd34 ac6986a dbafd34 5216c52 86d8605 186da5b dbafd34 186da5b dbafd34 186da5b dbafd34 2649278 dbafd34 186da5b dbafd34 52b5462 186da5b 7034732 52b5462 d742a71 cdf05c6 d742a71 52b5462 d742a71 141db3c d742a71 52b5462 d742a71 ee14428 d742a71 ee14428 86d8605 1ad0756 86d8605 edbef61 3e76623 f7336c1 7034732 86d8605 5216c52 f7336c1 8346bd0 f7336c1 1fc77ce f7336c1 ad895a9 86d8605 5216c52 f7336c1 186da5b a57bf8b f7336c1 5216c52 f7336c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 |
import os
import shutil
import sys
import warnings
import random
import time
import logging
import fal_client
import base64
import numpy as np
import math
import scipy
import requests
import torch
import torchvision
import gradio as gr
import argparse
import spaces
from PIL import Image, ImageFilter, ImageOps, ImageDraw, ImageFont
from io import BytesIO
from typing import Dict, List, Tuple, Union, Optional
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)
# Download model weights only if they don't exist
if not os.path.exists("groundingdino_swint_ogc.pth"):
os.system("wget https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth")
if not os.path.exists("sam_hq_vit_l.pth"):
os.system("wget https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_l.pth")
# Add paths
sys.path.append(os.path.join(os.getcwd(), "GroundingDINO"))
sys.path.append(os.path.join(os.getcwd(), "sam-hq"))
warnings.filterwarnings("ignore")
# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# segment anything
from segment_anything import build_sam_vit_l, SamPredictor
# Constants
CONFIG_FILE = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
GROUNDINGDINO_CHECKPOINT = "groundingdino_swint_ogc.pth"
SAM_CHECKPOINT = 'sam_hq_vit_l.pth'
OUTPUT_DIR = "outputs"
# Global variables for model caching
_models = {
'groundingdino': None,
'sam_predictor': None
}
# Enable GPU if available with proper error handling
try:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
logger.info(f"Using device: {device}")
except Exception as e:
logger.warning(f"Error detecting GPU, falling back to CPU: {e}")
device = 'cpu'
class ModelManager:
"""Manages model loading, unloading, and provides error handling"""
@staticmethod
def load_model(model_name: str) -> None:
"""Load a model if not already loaded"""
try:
if model_name == 'groundingdino' and _models['groundingdino'] is None:
logger.info("Loading GroundingDINO model...")
start_time = time.time()
if not os.path.exists(GROUNDINGDINO_CHECKPOINT):
raise FileNotFoundError(f"GroundingDINO checkpoint not found at {GROUNDINGDINO_CHECKPOINT}")
args = SLConfig.fromfile(CONFIG_FILE)
args.device = device
model = build_model(args)
checkpoint = torch.load(GROUNDINGDINO_CHECKPOINT, map_location="cpu")
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
logger.info(f"GroundingDINO load result: {load_res}")
_ = model.eval()
_models['groundingdino'] = model
logger.info(f"GroundingDINO model loaded in {time.time() - start_time:.2f} seconds")
elif model_name == 'sam' and _models['sam_predictor'] is None:
logger.info("Loading SAM-HQ model...")
start_time = time.time()
if not os.path.exists(SAM_CHECKPOINT):
raise FileNotFoundError(f"SAM checkpoint not found at {SAM_CHECKPOINT}")
sam = build_sam_vit_l(checkpoint=SAM_CHECKPOINT)
sam.to(device=device)
_models['sam_predictor'] = SamPredictor(sam)
logger.info(f"SAM-HQ model loaded in {time.time() - start_time:.2f} seconds")
except Exception as e:
logger.error(f"Error loading {model_name} model: {e}")
raise RuntimeError(f"Failed to load {model_name} model: {e}")
@staticmethod
def get_model(model_name: str):
"""Get a model, loading it if necessary"""
if model_name not in _models or _models[model_name] is None:
ModelManager.load_model(model_name)
return _models[model_name]
@staticmethod
def unload_model(model_name: str) -> None:
"""Unload a model to free memory"""
if model_name in _models and _models[model_name] is not None:
logger.info(f"Unloading {model_name} model")
_models[model_name] = None
if device == 'cuda':
torch.cuda.empty_cache()
def transform_image(image_pil: Image.Image) -> torch.Tensor:
"""Transform PIL image for GroundingDINO"""
transform = T.Compose([
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
image, _ = transform(image_pil, None) # 3, h, w
return image
def get_grounding_output(
image: torch.Tensor,
caption: str,
box_threshold: float,
text_threshold: float,
with_logits: bool = True
) -> Tuple[torch.Tensor, torch.Tensor, List[str]]:
"""Run GroundingDINO to get bounding boxes from text prompt"""
try:
model = ModelManager.get_model('groundingdino')
# Format caption
caption = caption.lower().strip()
if not caption.endswith("."):
caption = caption + "."
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
# Filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
# Get phrases
tokenizer = model.tokenizer
tokenized = tokenizer(caption)
pred_phrases = []
scores = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(
logit > text_threshold, tokenized, tokenizer)
if with_logits:
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
else:
pred_phrases.append(pred_phrase)
scores.append(logit.max().item())
return boxes_filt, torch.Tensor(scores), pred_phrases
except Exception as e:
logger.error(f"Error in grounding output: {e}")
# Return empty results instead of crashing
return torch.Tensor([]), torch.Tensor([]), []
def draw_mask(mask: np.ndarray, draw: ImageDraw.Draw) -> None:
"""Draw mask on image"""
color = (255, 255, 255, 255)
nonzero_coords = np.transpose(np.nonzero(mask))
for coord in nonzero_coords:
draw.point(coord[::-1], fill=color)
def draw_box(box: torch.Tensor, draw: ImageDraw.Draw, label: Optional[str]) -> None:
"""Draw bounding box on image"""
color = tuple(np.random.randint(0, 255, size=3).tolist())
draw.rectangle(((box[0], box[1]), (box[2], box[3])), outline=color, width=2)
if label:
font = ImageFont.load_default()
if hasattr(font, "getbbox"):
bbox = draw.textbbox((box[0], box[1]), str(label), font)
else:
w, h = draw.textsize(str(label), font)
bbox = (box[0], box[1], w + box[0], box[1] + h)
draw.rectangle(bbox, fill=color)
draw.text((box[0], box[1]), str(label), fill="white")
def run_grounded_sam(input_image, product):
"""Main function to run GroundingDINO and SAM-HQ"""
# Create output directory
os.makedirs(OUTPUT_DIR, exist_ok=True)
text_prompt = product
task_type = 'text'
box_threshold = 0.3
text_threshold = 0.25
iou_threshold = 0.8
hq_token_only = True
# Process input image
if isinstance(input_image, dict):
# Input from gradio sketch component
scribble = np.array(input_image["mask"])
image_pil = input_image["image"].convert("RGB")
else:
# Direct image input
image_pil = input_image.convert("RGB") if input_image else None
scribble = None
if image_pil is None:
logger.error("No input image provided")
return [Image.new('RGB', (400, 300), color='gray')]
# Transform image for GroundingDINO
transformed_image = transform_image(image_pil)
# Load models as needed
ModelManager.load_model('groundingdino')
size = image_pil.size
H, W = size[1], size[0]
# Run GroundingDINO with provided text
boxes_filt, scores, pred_phrases = get_grounding_output(
transformed_image, text_prompt, box_threshold, text_threshold
)
if boxes_filt is not None:
# Scale boxes to image dimensions
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
# Apply non-maximum suppression if we have multiple boxes
if boxes_filt.size(0) > 1:
logger.info(f"Before NMS: {boxes_filt.shape[0]} boxes")
nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
boxes_filt = boxes_filt[nms_idx]
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
logger.info(f"After NMS: {boxes_filt.shape[0]} boxes")
# Load SAM model
ModelManager.load_model('sam')
sam_predictor = ModelManager.get_model('sam_predictor')
# Set image for SAM
image = np.array(image_pil)
sam_predictor.set_image(image)
# Run SAM
# Use boxes for these task types
if boxes_filt.size(0) == 0:
logger.warning("No boxes detected")
return [image_pil, Image.new('RGBA', size, color=(0, 0, 0, 0))]
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)
masks, _, _ = sam_predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes,
multimask_output=False,
hq_token_only=hq_token_only,
)
# Create mask image
mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0))
mask_draw = ImageDraw.Draw(mask_image)
# Draw masks
for mask in masks:
draw_mask(mask[0].cpu().numpy(), mask_draw)
# Draw boxes and points on original image
image_draw = ImageDraw.Draw(image_pil)
for box, label in zip(boxes_filt, pred_phrases):
draw_box(box, image_draw, label)
return mask_image
# except Exception as e:
# logger.error(f"Error in run_grounded_sam: {e}")
# # Return original image on error
# if isinstance(input_image, dict) and "image" in input_image:
# return [input_image["image"], Image.new('RGBA', input_image["image"].size, color=(0, 0, 0, 0))]
# elif isinstance(input_image, Image.Image):
# return [input_image, Image.new('RGBA', input_image.size, color=(0, 0, 0, 0))]
# else:
# return [Image.new('RGB', (400, 300), color='gray'), Image.new('RGBA', (400, 300), color=(0, 0, 0, 0))]
def split_image_with_alpha(image):
image = image.convert("RGB")
return image
def gaussian_blur(image, radius=10):
"""Apply Gaussian blur to image."""
blurred = image.filter(ImageFilter.GaussianBlur(radius=10))
return blurred
def invert_image(image):
img_inverted = ImageOps.invert(image)
return img_inverted
def expand_mask(mask, expand, tapered_corners):
# Ensure mask is in grayscale (mode 'L')
mask = mask.convert("L")
# Convert to NumPy array
mask_np = np.array(mask)
# Define kernel
c = 0 if tapered_corners else 1
kernel = np.array([[c, 1, c],
[1, 1, 1],
[c, 1, c]], dtype=np.uint8)
# Perform dilation or erosion based on expand value
if expand > 0:
for _ in range(expand):
mask_np = scipy.ndimage.grey_dilation(mask_np, footprint=kernel)
elif expand < 0:
for _ in range(abs(expand)):
mask_np = scipy.ndimage.grey_erosion(mask_np, footprint=kernel)
# Convert back to PIL image
return Image.fromarray(mask_np, mode="L")
def image_blend_by_mask(image_a, image_b, mask, blend_percentage):
# Ensure images have the same size and mode
image_a = image_a.convert('RGB')
image_b = image_b.convert('RGB')
mask = mask.convert('L')
# Resize images if they don't match
if image_a.size != image_b.size:
image_b = image_b.resize(image_a.size, Image.LANCZOS)
# Ensure mask has the same size
if mask.size != image_a.size:
mask = mask.resize(image_a.size, Image.LANCZOS)
# Invert mask
mask = ImageOps.invert(mask)
# Mask image
masked_img = Image.composite(image_a, image_b, mask)
# Blend image
blend_mask = Image.new(mode="L", size=image_a.size,
color=(round(blend_percentage * 255)))
blend_mask = ImageOps.invert(blend_mask)
img_result = Image.composite(image_a, masked_img, blend_mask)
del image_a, image_b, blend_mask, mask
return img_result
def blend_images(image_a, image_b, blend_percentage):
"""Blend img_b over image_a using the normal mode with a blend percentage."""
img_a = image_a.convert("RGBA")
img_b = image_b.convert("RGBA")
# Blend img_b over img_a using alpha_composite (normal blend mode)
out_image = Image.alpha_composite(img_a, img_b)
out_image = out_image.convert("RGB")
# Create blend mask
blend_mask = Image.new("L", image_a.size, round(blend_percentage * 255))
blend_mask = ImageOps.invert(blend_mask) # Invert the mask
# Apply composite blend
result = Image.composite(image_a, out_image, blend_mask)
return result
def apply_image_levels(image, black_level, mid_level, white_level):
levels = AdjustLevels(black_level, mid_level, white_level)
adjusted_image = levels.adjust(image)
return adjusted_image
class AdjustLevels:
def __init__(self, min_level, mid_level, max_level):
self.min_level = min_level
self.mid_level = mid_level
self.max_level = max_level
def adjust(self, im):
im_arr = np.array(im).astype(np.float32)
im_arr[im_arr < self.min_level] = self.min_level
im_arr = (im_arr - self.min_level) * \
(255 / (self.max_level - self.min_level))
im_arr = np.clip(im_arr, 0, 255)
# mid-level adjustment
gamma = math.log(0.5) / math.log((self.mid_level - self.min_level) / (self.max_level - self.min_level))
im_arr = np.power(im_arr / 255, gamma) * 255
im_arr = im_arr.astype(np.uint8)
im = Image.fromarray(im_arr)
return im
def resize_image(image, scaling_factor=1):
image = image.resize((int(image.width * scaling_factor),
int(image.height * scaling_factor)))
return image
def upscale_image(image, size):
new_image = image.resize((size, size), Image.LANCZOS)
return new_image
def resize_to_square(image, size=1024):
# Load image if a file path is provided
if isinstance(image, str):
img = Image.open(image).convert("RGBA")
else:
img = image.convert("RGBA") # If already an Image object
# Resize while maintaining aspect ratio
img.thumbnail((size, size), Image.LANCZOS)
# Create a transparent square canvas
square_img = Image.new("RGBA", (size, size), (0, 0, 0, 0))
# Calculate the position to paste the resized image (centered)
x_offset = (size - img.width) // 2
y_offset = (size - img.height) // 2
# Extract the alpha channel as a mask
mask = img.split()[3] if img.mode == "RGBA" else None
# Paste the resized image onto the square canvas with the correct transparency mask
square_img.paste(img, (x_offset, y_offset), mask)
return square_img
def encode_image(image):
buffer = BytesIO()
image.save(buffer, format="PNG")
encoded_image = base64.b64encode(buffer.getvalue()).decode("utf-8")
return f"data:image/png;base64,{encoded_image}"
def generate_ai_bg(input_img, prompt):
# input_img = resize_image(input_img, 0.01)
hf_input_img = encode_image(input_img)
handler = fal_client.submit(
"fal-ai/iclight-v2",
arguments={
"prompt": prompt,
"image_url": hf_input_img
},
webhook_url="https://optional.webhook.url/for/results",
)
request_id = handler.request_id
status = fal_client.status("fal-ai/iclight-v2", request_id, with_logs=True)
result = fal_client.result("fal-ai/iclight-v2", request_id)
relight_img_path = result['images'][0]['url']
response = requests.get(relight_img_path, stream=True)
relight_img = Image.open(BytesIO(response.content)).convert("RGBA")
# from gradio_client import Client, handle_file
# client = Client("lllyasviel/iclight-v2-vary")
# result = client.predict(
# input_fg=handle_file(input_img),
# bg_source="None",
# prompt=prompt,
# image_width=256,
# image_height=256,
# num_samples=1,
# seed=12345,
# steps=25,
# n_prompt="lowres, bad anatomy, bad hands, cropped, worst quality",
# cfg=2,
# gs=5,
# enable_hr_fix=True,
# hr_downscale=0.5,
# lowres_denoise=0.8,
# highres_denoise=0.99,
# api_name="/process"
# )
# print(result)
# relight_img_path = result[0][0]['image']
# relight_img = Image.open(relight_img_path).convert("RGBA")
return relight_img
def blend_details(input_image, relit_image, masked_image, product, scaling_factor=1):
# input_image = resize_image(input_image)
# relit_image = resize_image(relit_image)
# masked_image = resize_image(masked_image)
masked_image_rgb = split_image_with_alpha(masked_image)
masked_image_blurred = gaussian_blur(masked_image_rgb, radius=10)
grow_mask = expand_mask(masked_image_blurred, -15, True)
# grow_mask.save("output/grow_mask.png")
# Split images and get RGB channels
input_image_rgb = split_image_with_alpha(input_image)
input_blurred = gaussian_blur(input_image_rgb, radius=10)
input_inverted = invert_image(input_image_rgb)
# input_blurred.save("output/input_blurred.png")
# input_inverted.save("output/input_inverted.png")
# Add blurred and inverted images
input_blend_1 = blend_images(input_inverted, input_blurred, blend_percentage=0.5)
input_blend_1_inverted = invert_image(input_blend_1)
input_blend_2 = blend_images(input_blurred, input_blend_1_inverted, blend_percentage=1.0)
# input_blend_2.save("output/input_blend_2.png")
# Process relit image
relit_image_rgb = split_image_with_alpha(relit_image)
relit_blurred = gaussian_blur(relit_image_rgb, radius=10)
relit_inverted = invert_image(relit_image_rgb)
# relit_blurred.save("output/relit_blurred.png")
# relit_inverted.save("output/relit_inverted.png")
# Add blurred and inverted relit images
relit_blend_1 = blend_images(relit_inverted, relit_blurred, blend_percentage=0.5)
relit_blend_1_inverted = invert_image(relit_blend_1)
relit_blend_2 = blend_images(relit_blurred, relit_blend_1_inverted, blend_percentage=1.0)
# relit_blend_2.save("output/relit_blend_2.png")
high_freq_comp = image_blend_by_mask(relit_blend_2, input_blend_2, grow_mask, blend_percentage=1.0)
# high_freq_comp.save("output/high_freq_comp.png")
comped_image = blend_images(relit_blurred, high_freq_comp, blend_percentage=0.65)
# comped_image.save("output/comped_image.png")
final_image = apply_image_levels(comped_image, black_level=83, mid_level=128, white_level=172)
# final_image.save("output/final_image.png")
return final_image
@spaces.GPU
def generate_image(input_image_path, prompt):
# resized_input_img = resize_to_square(input_image_path, 256)
# resized_input_img_path = '/tmp/gradio/resized_input_img.png'
# resized_input_img.convert("RGBA").save(resized_input_img_path, "PNG")
# ai_gen_image = generate_ai_bg(resized_input_img, prompt)
# upscaled_ai_image = upscale_image(ai_gen_image, 8192)
# upscaled_input_image = upscale_image(resized_input_img, 8192)
# mask_input_image = run_grounded_sam(upscaled_input_image)
# final_image = blend_details(upscaled_input_image, upscaled_ai_image, mask_input_image)
# FAL
resized_input_img = resize_to_square(input_image_path, 1024)
ai_gen_image = generate_ai_bg(resized_input_img, prompt)
mask_input_image = run_grounded_sam(resized_input_img, product)
final_image = blend_details(resized_input_img, ai_gen_image, mask_input_image, product)
return final_image
def create_ui():
"""Create Gradio UI for CarViz demo"""
with gr.Blocks(title="CarViz Demo") as block:
gr.Markdown("""
# CarViz
""")
with gr.Row():
with gr.Column():
input_image_path = gr.Image(type="filepath", label="image")
product = gr.Textbox(label="Product", placeholder="Enter what your product is here...")
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
run_button = gr.Button(value='Run')
with gr.Column():
output_image = gr.Image(label="Generated Image")
# Run button
run_button.click(
fn=generate_image,
inputs=[
input_image_path,
product,
prompt
],
outputs=[output_image]
)
return block
if __name__ == "__main__":
parser = argparse.ArgumentParser("Carviz demo", add_help=True)
parser.add_argument("--debug", action="store_true", help="using debug mode")
parser.add_argument("--share", action="store_true", help="share the app")
parser.add_argument('--no-gradio-queue', action="store_true", help="disable gradio queue")
parser.add_argument('--port', type=int, default=7860, help="port to run the app")
parser.add_argument('--host', type=str, default="0.0.0.0", help="host to run the app")
args = parser.parse_args()
logger.info(f"Starting CarViz demo with args: {args}")
# Check for model files
if not os.path.exists(GROUNDINGDINO_CHECKPOINT):
logger.warning(f"GroundingDINO checkpoint not found at {GROUNDINGDINO_CHECKPOINT}")
if not os.path.exists(SAM_CHECKPOINT):
logger.warning(f"SAM-HQ checkpoint not found at {SAM_CHECKPOINT}")
# Create app
block = create_ui()
if not args.no_gradio_queue:
block = block.queue()
# Launch app
try:
block.launch(
debug=args.debug,
share=args.share,
show_error=True,
server_name=args.host,
server_port=args.port
)
except Exception as e:
logger.error(f"Error launching app: {e}")
|