tcid / model_page.py
ror's picture
ror HF Staff
More refactoring
6f570d6
raw
history blame
8.1 kB
import matplotlib.pyplot as plt
import pandas as pd
from utils import generate_underlined_line
from data import extract_model_data
# Figure dimensions
FIGURE_WIDTH_DUAL = 18
FIGURE_HEIGHT_DUAL = 9
# Colors
COLORS = {
'passed': '#4CAF50', # Medium green
'failed': '#E53E3E', # More red
'skipped': '#FFD54F', # Medium yellow
'error': '#8B0000' # Dark red
}
# Styling constants
BLACK = '#000000'
LABEL_COLOR = '#AAAAAA'
TITLE_COLOR = '#FFFFFF'
# Font sizes
DEVICE_TITLE_FONT_SIZE = 28
# Layout constants
SEPARATOR_LINE_Y_END = 0.85
SUBPLOT_TOP = 0.85
SUBPLOT_WSPACE = 0.4
PIE_START_ANGLE = 90
BORDER_LINE_WIDTH = 0.5
SEPARATOR_ALPHA = 0.5
SEPARATOR_LINE_WIDTH = 1
DEVICE_TITLE_PAD = 2
MODEL_TITLE_Y = 1
# Processing constants
MAX_FAILURE_ITEMS = 10
def _process_failure_category(failures_obj: dict, category: str, info_lines: list) -> None:
"""Process a single failure category (multi or single) and add to info_lines."""
if category in failures_obj and failures_obj[category]:
info_lines.append(generate_underlined_line(f"{category.title()} GPU failure details:"))
if isinstance(failures_obj[category], list):
# Handle list of failures (could be strings or dicts)
for i, failure in enumerate(failures_obj[category][:MAX_FAILURE_ITEMS]):
if isinstance(failure, dict):
# Extract meaningful info from dict (e.g., test name, line, etc.)
failure_str = failure.get('line', failure.get('test',
failure.get('name', str(failure))))
info_lines.append(f" {i+1}. {failure_str}")
else:
info_lines.append(f" {i+1}. {str(failure)}")
if len(failures_obj[category]) > MAX_FAILURE_ITEMS:
remaining = len(failures_obj[category]) - MAX_FAILURE_ITEMS
info_lines.append(f"... and {remaining} more")
else:
info_lines.append(str(failures_obj[category]))
info_lines.append("")
def extract_failure_info(failures_obj, device: str, multi_count: int, single_count: int) -> str:
"""Extract failure information from failures object."""
if (not failures_obj or pd.isna(failures_obj)) and multi_count == 0 and single_count == 0:
return f"No failures on {device}"
info_lines = []
# Add counts summary
if multi_count > 0 or single_count > 0:
info_lines.append(generate_underlined_line(f"Failure Summary for {device}:"))
if multi_count > 0:
info_lines.append(f"Multi GPU failures: {multi_count}")
if single_count > 0:
info_lines.append(f"Single GPU failures: {single_count}")
info_lines.append("")
# Try to extract detailed failure information
try:
if isinstance(failures_obj, dict):
_process_failure_category(failures_obj, 'multi', info_lines)
_process_failure_category(failures_obj, 'single', info_lines)
return "\n".join(info_lines) if info_lines else f"No detailed failure info for {device}"
except Exception as e:
if multi_count > 0 or single_count > 0:
error_msg = (f"Failures detected on {device} (Multi: {multi_count}, Single: {single_count})\n"
f"Details unavailable: {str(e)}")
return error_msg
return f"Error processing failure info for {device}: {str(e)}"
def _create_pie_chart(ax: plt.Axes, device_label: str, filtered_stats: dict) -> None:
"""Create a pie chart for device statistics."""
if not filtered_stats:
ax.text(0.5, 0.5, 'No test results',
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=14, color='#888888',
fontfamily='monospace', weight='normal')
ax.set_title(device_label, fontsize=DEVICE_TITLE_FONT_SIZE, weight='bold',
pad=DEVICE_TITLE_PAD, color=TITLE_COLOR, fontfamily='monospace')
ax.axis('off')
return
chart_colors = [COLORS[category] for category in filtered_stats.keys()]
# Create minimal pie chart - full pie, no donut effect
wedges, texts, autotexts = ax.pie(
filtered_stats.values(),
labels=[label.lower() for label in filtered_stats.keys()], # Lowercase for minimal look
colors=chart_colors,
autopct=lambda pct: f'{int(pct/100*sum(filtered_stats.values()))}',
startangle=PIE_START_ANGLE,
explode=None, # No separation
shadow=False,
wedgeprops=dict(edgecolor='#1a1a1a', linewidth=BORDER_LINE_WIDTH), # Minimal borders
textprops={'fontsize': 12, 'weight': 'normal',
'color': LABEL_COLOR, 'fontfamily': 'monospace'}
)
# Enhanced percentage text styling for better readability
for autotext in autotexts:
autotext.set_color(BLACK) # Black text for better contrast
autotext.set_weight('bold')
autotext.set_fontsize(14)
autotext.set_fontfamily('monospace')
# Minimal category labels
for text in texts:
text.set_color(LABEL_COLOR)
text.set_weight('normal')
text.set_fontsize(13)
text.set_fontfamily('monospace')
# Device label closer to chart and bigger
ax.set_title(device_label, fontsize=DEVICE_TITLE_FONT_SIZE, weight='normal',
pad=DEVICE_TITLE_PAD, color=TITLE_COLOR, fontfamily='monospace')
def plot_model_stats(df: pd.DataFrame, model_name: str) -> tuple[plt.Figure, str, str]:
"""Draws pie charts of model's passed, failed, skipped, and error stats for AMD and NVIDIA."""
# Handle case where the dataframe is empty or the model name could not be found in it
if df.empty or model_name not in df.index:
# Create empty stats for both devices
amd_filtered = {}
nvidia_filtered = {}
failed_multi_amd = failed_single_amd = failed_multi_nvidia = failed_single_nvidia = 0
failures_amd = failures_nvidia = {}
else:
row = df.loc[model_name]
# Extract and process model data
amd_stats, nvidia_stats, failed_multi_amd, failed_single_amd, failed_multi_nvidia, failed_single_nvidia = \
extract_model_data(row)
# Filter out categories with 0 values for cleaner visualization
amd_filtered = {k: v for k, v in amd_stats.items() if v > 0}
nvidia_filtered = {k: v for k, v in nvidia_stats.items() if v > 0}
# Generate failure info directly from dataframe
failures_amd = row.get('failures_amd', {})
failures_nvidia = row.get('failures_nvidia', {})
# Always create figure with two subplots side by side with padding
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(FIGURE_WIDTH_DUAL, FIGURE_HEIGHT_DUAL), facecolor=BLACK)
ax1.set_facecolor(BLACK)
ax2.set_facecolor(BLACK)
# Create both pie charts with device labels
_create_pie_chart(ax1, "amd", amd_filtered)
_create_pie_chart(ax2, "nvidia", nvidia_filtered)
# Add subtle separation line between charts - stops at device labels level
line_x = 0.5
fig.add_artist(plt.Line2D([line_x, line_x], [0.0, SEPARATOR_LINE_Y_END],
color='#333333', linewidth=SEPARATOR_LINE_WIDTH,
alpha=SEPARATOR_ALPHA, transform=fig.transFigure))
# Add central shared title for model name
fig.suptitle(f'{model_name.lower()}', fontsize=32, weight='bold',
color='#CCCCCC', fontfamily='monospace', y=MODEL_TITLE_Y)
# Clean layout with padding and space for central title
plt.tight_layout()
plt.subplots_adjust(top=SUBPLOT_TOP, wspace=SUBPLOT_WSPACE)
amd_failed_info = extract_failure_info(failures_amd, 'AMD', failed_multi_amd, failed_single_amd)
nvidia_failed_info = extract_failure_info(failures_nvidia, 'NVIDIA', failed_multi_nvidia, failed_single_nvidia)
return fig, amd_failed_info, nvidia_failed_info