Spaces:
Running
Running
import matplotlib.pyplot as plt | |
import pandas as pd | |
from utils import generate_underlined_line | |
from data import extract_model_data | |
# Figure dimensions | |
FIGURE_WIDTH_DUAL = 18 | |
FIGURE_HEIGHT_DUAL = 9 | |
# Colors | |
COLORS = { | |
'passed': '#4CAF50', # Medium green | |
'failed': '#E53E3E', # More red | |
'skipped': '#FFD54F', # Medium yellow | |
'error': '#8B0000' # Dark red | |
} | |
# Styling constants | |
BLACK = '#000000' | |
LABEL_COLOR = '#AAAAAA' | |
TITLE_COLOR = '#FFFFFF' | |
# Font sizes | |
DEVICE_TITLE_FONT_SIZE = 28 | |
# Layout constants | |
SEPARATOR_LINE_Y_END = 0.85 | |
SUBPLOT_TOP = 0.85 | |
SUBPLOT_WSPACE = 0.4 | |
PIE_START_ANGLE = 90 | |
BORDER_LINE_WIDTH = 0.5 | |
SEPARATOR_ALPHA = 0.5 | |
SEPARATOR_LINE_WIDTH = 1 | |
DEVICE_TITLE_PAD = 2 | |
MODEL_TITLE_Y = 1 | |
# Processing constants | |
MAX_FAILURE_ITEMS = 10 | |
def _process_failure_category(failures_obj: dict, category: str, info_lines: list) -> None: | |
"""Process a single failure category (multi or single) and add to info_lines.""" | |
if category in failures_obj and failures_obj[category]: | |
info_lines.append(generate_underlined_line(f"{category.title()} GPU failure details:")) | |
if isinstance(failures_obj[category], list): | |
# Handle list of failures (could be strings or dicts) | |
for i, failure in enumerate(failures_obj[category][:MAX_FAILURE_ITEMS]): | |
if isinstance(failure, dict): | |
# Extract meaningful info from dict (e.g., test name, line, etc.) | |
failure_str = failure.get('line', failure.get('test', | |
failure.get('name', str(failure)))) | |
info_lines.append(f" {i+1}. {failure_str}") | |
else: | |
info_lines.append(f" {i+1}. {str(failure)}") | |
if len(failures_obj[category]) > MAX_FAILURE_ITEMS: | |
remaining = len(failures_obj[category]) - MAX_FAILURE_ITEMS | |
info_lines.append(f"... and {remaining} more") | |
else: | |
info_lines.append(str(failures_obj[category])) | |
info_lines.append("") | |
def extract_failure_info(failures_obj, device: str, multi_count: int, single_count: int) -> str: | |
"""Extract failure information from failures object.""" | |
if (not failures_obj or pd.isna(failures_obj)) and multi_count == 0 and single_count == 0: | |
return f"No failures on {device}" | |
info_lines = [] | |
# Add counts summary | |
if multi_count > 0 or single_count > 0: | |
info_lines.append(generate_underlined_line(f"Failure Summary for {device}:")) | |
if multi_count > 0: | |
info_lines.append(f"Multi GPU failures: {multi_count}") | |
if single_count > 0: | |
info_lines.append(f"Single GPU failures: {single_count}") | |
info_lines.append("") | |
# Try to extract detailed failure information | |
try: | |
if isinstance(failures_obj, dict): | |
_process_failure_category(failures_obj, 'multi', info_lines) | |
_process_failure_category(failures_obj, 'single', info_lines) | |
return "\n".join(info_lines) if info_lines else f"No detailed failure info for {device}" | |
except Exception as e: | |
if multi_count > 0 or single_count > 0: | |
error_msg = (f"Failures detected on {device} (Multi: {multi_count}, Single: {single_count})\n" | |
f"Details unavailable: {str(e)}") | |
return error_msg | |
return f"Error processing failure info for {device}: {str(e)}" | |
def _create_pie_chart(ax: plt.Axes, device_label: str, filtered_stats: dict) -> None: | |
"""Create a pie chart for device statistics.""" | |
if not filtered_stats: | |
ax.text(0.5, 0.5, 'No test results', | |
horizontalalignment='center', verticalalignment='center', | |
transform=ax.transAxes, fontsize=14, color='#888888', | |
fontfamily='monospace', weight='normal') | |
ax.set_title(device_label, fontsize=DEVICE_TITLE_FONT_SIZE, weight='bold', | |
pad=DEVICE_TITLE_PAD, color=TITLE_COLOR, fontfamily='monospace') | |
ax.axis('off') | |
return | |
chart_colors = [COLORS[category] for category in filtered_stats.keys()] | |
# Create minimal pie chart - full pie, no donut effect | |
wedges, texts, autotexts = ax.pie( | |
filtered_stats.values(), | |
labels=[label.lower() for label in filtered_stats.keys()], # Lowercase for minimal look | |
colors=chart_colors, | |
autopct=lambda pct: f'{int(pct/100*sum(filtered_stats.values()))}', | |
startangle=PIE_START_ANGLE, | |
explode=None, # No separation | |
shadow=False, | |
wedgeprops=dict(edgecolor='#1a1a1a', linewidth=BORDER_LINE_WIDTH), # Minimal borders | |
textprops={'fontsize': 12, 'weight': 'normal', | |
'color': LABEL_COLOR, 'fontfamily': 'monospace'} | |
) | |
# Enhanced percentage text styling for better readability | |
for autotext in autotexts: | |
autotext.set_color(BLACK) # Black text for better contrast | |
autotext.set_weight('bold') | |
autotext.set_fontsize(14) | |
autotext.set_fontfamily('monospace') | |
# Minimal category labels | |
for text in texts: | |
text.set_color(LABEL_COLOR) | |
text.set_weight('normal') | |
text.set_fontsize(13) | |
text.set_fontfamily('monospace') | |
# Device label closer to chart and bigger | |
ax.set_title(device_label, fontsize=DEVICE_TITLE_FONT_SIZE, weight='normal', | |
pad=DEVICE_TITLE_PAD, color=TITLE_COLOR, fontfamily='monospace') | |
def plot_model_stats(df: pd.DataFrame, model_name: str) -> tuple[plt.Figure, str, str]: | |
"""Draws pie charts of model's passed, failed, skipped, and error stats for AMD and NVIDIA.""" | |
# Handle case where the dataframe is empty or the model name could not be found in it | |
if df.empty or model_name not in df.index: | |
# Create empty stats for both devices | |
amd_filtered = {} | |
nvidia_filtered = {} | |
failed_multi_amd = failed_single_amd = failed_multi_nvidia = failed_single_nvidia = 0 | |
failures_amd = failures_nvidia = {} | |
else: | |
row = df.loc[model_name] | |
# Extract and process model data | |
amd_stats, nvidia_stats, failed_multi_amd, failed_single_amd, failed_multi_nvidia, failed_single_nvidia = \ | |
extract_model_data(row) | |
# Filter out categories with 0 values for cleaner visualization | |
amd_filtered = {k: v for k, v in amd_stats.items() if v > 0} | |
nvidia_filtered = {k: v for k, v in nvidia_stats.items() if v > 0} | |
# Generate failure info directly from dataframe | |
failures_amd = row.get('failures_amd', {}) | |
failures_nvidia = row.get('failures_nvidia', {}) | |
# Always create figure with two subplots side by side with padding | |
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(FIGURE_WIDTH_DUAL, FIGURE_HEIGHT_DUAL), facecolor=BLACK) | |
ax1.set_facecolor(BLACK) | |
ax2.set_facecolor(BLACK) | |
# Create both pie charts with device labels | |
_create_pie_chart(ax1, "amd", amd_filtered) | |
_create_pie_chart(ax2, "nvidia", nvidia_filtered) | |
# Add subtle separation line between charts - stops at device labels level | |
line_x = 0.5 | |
fig.add_artist(plt.Line2D([line_x, line_x], [0.0, SEPARATOR_LINE_Y_END], | |
color='#333333', linewidth=SEPARATOR_LINE_WIDTH, | |
alpha=SEPARATOR_ALPHA, transform=fig.transFigure)) | |
# Add central shared title for model name | |
fig.suptitle(f'{model_name.lower()}', fontsize=32, weight='bold', | |
color='#CCCCCC', fontfamily='monospace', y=MODEL_TITLE_Y) | |
# Clean layout with padding and space for central title | |
plt.tight_layout() | |
plt.subplots_adjust(top=SUBPLOT_TOP, wspace=SUBPLOT_WSPACE) | |
amd_failed_info = extract_failure_info(failures_amd, 'AMD', failed_multi_amd, failed_single_amd) | |
nvidia_failed_info = extract_failure_info(failures_nvidia, 'NVIDIA', failed_multi_nvidia, failed_single_nvidia) | |
return fig, amd_failed_info, nvidia_failed_info | |