File size: 12,734 Bytes
0618de2
 
2032430
 
 
def4deb
1294c96
54299e5
0618de2
 
 
 
 
fea5367
 
0618de2
 
 
7a679b4
 
 
0618de2
fea5367
0618de2
 
58be06f
0618de2
 
 
 
 
 
2032430
54299e5
 
 
 
2032430
54299e5
2032430
 
 
 
54299e5
 
2032430
 
 
 
54299e5
fea5367
2032430
7a679b4
58be06f
1294c96
 
58be06f
 
54299e5
 
 
0618de2
285a433
0618de2
5c16708
0618de2
 
 
 
 
92846e1
0618de2
92846e1
 
0618de2
d4ac0ac
 
 
 
0618de2
92846e1
0618de2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2032430
0618de2
 
 
 
 
 
 
 
2032430
54299e5
 
0618de2
 
 
 
2032430
54299e5
0618de2
 
2032430
54299e5
0618de2
 
 
 
 
2032430
54299e5
2032430
0618de2
 
 
54299e5
0618de2
 
54299e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0618de2
 
80b417a
7a679b4
 
 
 
 
80b417a
 
7a679b4
 
0618de2
 
 
 
 
 
 
 
 
 
 
 
 
 
2032430
0618de2
 
2032430
0618de2
2032430
0618de2
 
 
 
 
 
 
 
 
 
 
 
 
2032430
 
5524706
1294c96
54299e5
 
 
 
1294c96
2032430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c16708
 
 
2032430
 
 
 
 
def4deb
 
2032430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1294c96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2032430
 
 
 
 
54299e5
 
 
 
2032430
1294c96
 
2032430
 
1294c96
2032430
 
 
5c16708
 
 
2032430
 
 
 
5524706
54299e5
 
 
 
c2281d2
 
54299e5
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# # Install core packages
# !pip install -U transformers datasets accelerate

import logging
import io
import time
import gradio as gr  # βœ… required for progress bar
from pathlib import Path

# Python standard + ML packages
import pandas as pd
import numpy as np
import torch
from torch.utils.data import Dataset

from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, precision_recall_fscore_support

# Hugging Face Hub
from huggingface_hub import hf_hub_download

# Hugging Face transformers
import transformers
from transformers import (
    AutoTokenizer,
    DebertaV2Tokenizer,
    BertTokenizer, 
    BertForSequenceClassification,
    AutoModelForSequenceClassification,
    Trainer,
    TrainingArguments
)

PERSIST_DIR = Path("/home/user/app")
MODEL_DIR = PERSIST_DIR / "saved_model"
LOG_FILE = PERSIST_DIR / "training.log"

# configure logging 
log_buffer = io.StringIO()
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s",
    handlers=[
        logging.FileHandler(LOG_FILE),
        logging.StreamHandler(log_buffer)
    ]
)
logger = logging.getLogger(__name__)


# Check versions
logger.info("Transformers version:", transformers.__version__)

# Check for GPU availability
logger.info("Transformers version: %s", torch.__version__)
logger.info("torch.cuda.is_available(): %s", torch.cuda.is_available())
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Label mapping for evaluation
label_map = {0.0: "no", 0.5: "plausibly", 1.0: "yes"}

# Custom Dataset class

class AbuseDataset(Dataset):
    def __init__(self, texts, labels, tokenizer):
        self.encodings = tokenizer(texts, truncation=True, padding=True, max_length=512)
        self.labels = labels

    def __len__(self):
        return len(self.labels)
    
    def __getitem__(self, idx):
        item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
        item["labels"] = torch.tensor(self.labels[idx], dtype=torch.float)
        return item
    def __getitem__(self, idx):
        item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
        item["labels"] = torch.tensor(self.labels[idx], dtype=torch.float)
        return item


#  Convert label values to soft scores: "yes" = 1.0, "plausibly" = 0.5, others = 0.0
def label_row_soft(row):
    labels = []
    for col in label_columns:
        val = str(row[col]).strip().lower()
        if val == "yes":
            labels.append(1.0)
        elif val == "plausibly":
            labels.append(0.5)
        else:
            labels.append(0.0)
    return labels
    
# Function to map probabilities to 3 classes
# (0.0, 0.5, 1.0) based on thresholds
def map_to_3_classes(prob_array, low, high):
    """Map probabilities to 0.0, 0.5, 1.0 using thresholds."""
    mapped = np.zeros_like(prob_array)
    mapped[(prob_array > low) & (prob_array <= high)] = 0.5
    mapped[prob_array > high] = 1.0
    return mapped

def convert_to_label_strings(array):
    """Convert float label array to list of strings."""
    return [label_map[val] for val in array.flatten()]

def tune_thresholds(probs, true_labels, verbose=True):
    """Search for best (low, high) thresholds by macro F1 score."""
    best_macro_f1 = 0.0
    best_low, best_high = 0.0, 0.0

    for low in np.arange(0.2, 0.5, 0.05):
        for high in np.arange(0.55, 0.8, 0.05):
            if high <= low:
                continue

            pred_soft = map_to_3_classes(probs, low, high)
            pred_str = convert_to_label_strings(pred_soft)
            true_str = convert_to_label_strings(true_labels)

            _, _, f1, _ = precision_recall_fscore_support(
                true_str, pred_str,
                labels=["no", "plausibly", "yes"],
                average="macro",
                zero_division=0
            )
            if verbose:
                logger.info(f"low={low:.2f}, high={high:.2f} -> macro F1={f1:.3f}")
            if f1 > best_macro_f1:
                best_macro_f1 = f1
                best_low, best_high = low, high

    return best_low, best_high, best_macro_f1

def evaluate_model_with_thresholds(trainer, test_dataset):
    """Run full evaluation with automatic threshold tuning."""
    logger.info("\nπŸ” Running model predictions...")
    yield "\nπŸ” Running model predictions..."

    predictions = trainer.predict(test_dataset)
    probs = torch.sigmoid(torch.tensor(predictions.predictions)).numpy()
    true_soft = np.array(predictions.label_ids)

    logger.info("\nπŸ”Ž Tuning thresholds...")
    yield "\nπŸ”Ž Tuning thresholds..."
    best_low, best_high, best_f1 = tune_thresholds(probs, true_soft)

    logger.info(f"\nβœ… Best thresholds: low={best_low:.2f}, high={best_high:.2f} (macro F1={best_f1:.3f})")
    yield f"\nβœ… Best thresholds: low={best_low:.2f}, high={best_high:.2f} (macro F1={best_f1:.3f})"    

    final_pred_soft = map_to_3_classes(probs, best_low, best_high)
    final_pred_str = convert_to_label_strings(final_pred_soft)
    true_str = convert_to_label_strings(true_soft)

    logger.info("\nπŸ“Š Final Evaluation Report (multi-class per label):\n")
    yield "\nπŸ“Š Final Evaluation Report (multi-class per label):\n "
    logger.info(classification_report(
        true_str,
        final_pred_str,
        labels=["no", "plausibly", "yes"],
        digits=3,
        zero_division=0
    ))
    yield classification_report(
        true_str,
        final_pred_str,
        labels=["no", "plausibly", "yes"],
        digits=3,
        zero_division=0
    )
def load_saved_model_and_tokenizer():
    tokenizer = DebertaV2Tokenizer.from_pretrained(MODEL_DIR)
    model = AutoModelForSequenceClassification.from_pretrained(MODEL_DIR).to(device)
    return tokenizer, model

def evaluate_saved_model(progress=gr.Progress(track_tqdm=True)):
    if os.path.exists("saved_model/"):
        yield "βœ… Trained model found! Skipping training...\n"
    else:
        yield "❌ No trained model found. Please train the model first.\n"
        return
    try:
        logger.info("πŸ” Loading saved model for evaluation...")
        yield "πŸ” Loading saved model for evaluation...\n"

        tokenizer, model = load_saved_model_and_tokenizer()
        test_dataset = AbuseDataset(test_texts, test_labels, tokenizer)

        trainer = Trainer(
            model=model,
            args=TrainingArguments(
                output_dir="./results_eval",
                per_device_eval_batch_size=4,
                logging_dir="./logs_eval",
                disable_tqdm=True
            ),
            eval_dataset=test_dataset
        )

        label_map = {0.0: "no", 0.5: "plausibly", 1.0: "yes"}

        # Re-yield from generator
        for line in evaluate_model_with_thresholds(trainer, test_dataset):
            yield line

        logger.info("βœ… Evaluation complete.\n")
        yield "\nβœ… Evaluation complete.\n"

    except Exception as e:
        logger.exception(f"❌ Evaluation failed: {e}")
        yield f"❌ Evaluation failed: {e}\n"


token = os.environ.get("HF_TOKEN")  # Reads my token from a secure hf secret

# Load dataset from Hugging Face Hub
path = hf_hub_download(
    repo_id="rshakked/abusive-relashionship-stories",
    filename="Abusive Relationship Stories - Technion & MSF.xlsx",
    repo_type="dataset",
    use_auth_token= token
)
df = pd.read_excel(path)

# Define text and label columns
text_column = "post_body" 
label_columns = [
    'emotional_violence', 'physical_violence', 'sexual_violence', 'spiritual_violence',
    'economic_violence', 'past_offenses', 'social_isolation', 'refuses_treatment',
    'suicidal_threats', 'mental_condition', 'daily_activity_control', 'violent_behavior',
    'unemployment', 'substance_use', 'obsessiveness', 'jealousy', 'outbursts',
    'ptsd', 'hard_childhood', 'emotional_dependency', 'prevention_of_care',
    'fear_based_relationship', 'humiliation', 'physical_threats',
    'presence_of_others_in_assault', 'signs_of_injury', 'property_damage',
    'access_to_weapons', 'gaslighting'
]

logger.info(np.shape(df))
# Clean data
df = df[[text_column] + label_columns]
logger.info(np.shape(df))
df = df.dropna(subset=[text_column])
logger.info(np.shape(df))

df["label_vector"] = df.apply(label_row_soft, axis=1)
label_matrix = df["label_vector"].tolist()

# Proper 3-way split: train / val / test
train_val_texts, test_texts, train_val_labels, test_labels = train_test_split(
    df[text_column].tolist(), label_matrix, test_size=0.2, random_state=42
)

train_texts, val_texts, train_labels, val_labels = train_test_split(
    train_val_texts, train_val_labels, test_size=0.1, random_state=42
)

#model_name = "onlplab/alephbert-base"
model_name = "microsoft/deberta-v3-base"

def run_training(progress=gr.Progress(track_tqdm=True)):
    if os.path.exists("saved_model/"):
        yield "βœ… Trained model found! Skipping training...\n"
        yield evaluate_saved_model()
        return
    yield "πŸš€ Starting training...\n"
    try:
        logger.info("Starting training run...")

        # Load pretrained model for fine-tuning
        tokenizer = DebertaV2Tokenizer.from_pretrained(model_name)
        model = AutoModelForSequenceClassification.from_pretrained(
            model_name,
            num_labels=len(label_columns),
            problem_type="multi_label_classification"
        ).to(device)  # Move model to GPU

        # gradient checkpointing helps cut memory use:
        model.gradient_checkpointing_enable()

        # Freeze bottom 6 layers of DeBERTa encoder
        for name, param in model.named_parameters():
            if any(f"encoder.layer.{i}." in name for i in range(0, 6)):
                param.requires_grad = False
            

        train_dataset = AbuseDataset(train_texts, train_labels,tokenizer)
        val_dataset = AbuseDataset(val_texts, val_labels,tokenizer)
        test_dataset = AbuseDataset(test_texts, test_labels,tokenizer)

        # TrainingArguments for HuggingFace Trainer (logging, saving)
        training_args = TrainingArguments(
            output_dir="./results",
            num_train_epochs=3,
            per_device_train_batch_size=8,
            per_device_eval_batch_size=8,
            evaluation_strategy="epoch",
            save_strategy="epoch",
            logging_dir="./logs",
            logging_steps=500,
            disable_tqdm=True
        )

        # Train using HuggingFace Trainer
        trainer = Trainer(
            model=model,
            args=training_args,
            train_dataset=train_dataset,
            eval_dataset=val_dataset
        )

        logger.info("Training started with %d samples", len(train_dataset))        
        yield "πŸ”„ Training in progress...\n"

        total_steps = len(train_dataset) * training_args.num_train_epochs // training_args.per_device_train_batch_size
        intervals = max(total_steps // 20, 1)

        for i in range(0, total_steps, intervals):
            time.sleep(0.5)
            percent = int(100 * i / total_steps)
            progress(percent / 100)
            yield f"⏳ Progress: {percent}%\n"
        # # This checks if any tensor is on GPU too early.
        # logger.info("πŸ§ͺ Sample device check from train_dataset:")
        # sample = train_dataset[0]
        # for k, v in sample.items():
        #     logger.info(f"{k}: {v.device}")

        # Start training!
        trainer.train()

        # Save the model and tokenizer
        MODEL_DIR.mkdir(parents=True, exist_ok=True)
        model.save_pretrained(MODEL_DIR)
        tokenizer.save_pretrained(MODEL_DIR)

        logger.info(" Training completed and model saved.")
        yield "πŸŽ‰ Training complete! Model saved.\n"

    except Exception as e:
        logger.exception( f"❌ Training failed: {e}")
        yield f"❌ Training failed: {e}\n"

    # Evaluation
    try:
        if 'trainer' in locals():
            evaluate_model_with_thresholds(trainer, test_dataset)
            logger.info("Evaluation completed")
    except Exception as e:
        logger.exception(f"Evaluation failed: {e}")
    log_buffer.seek(0)
    return log_buffer.read()

def push_model_to_hub():
    try:
        logger.info("πŸ”„ Pushing model to Hugging Face Hub...")
        tokenizer, model = load_saved_model_and_tokenizer()
        model.push_to_hub("rshakked/abuse-detector-he-en", use_auth_token=token)
        tokenizer.push_to_hub("rshakked/abuse-detector-he-en", use_auth_token=token)
        return "βœ… Model pushed to hub successfully!"
    except Exception as e:
        logger.exception("❌ Failed to push model to hub.")
        return f"❌ Failed to push model: {e}"