File size: 12,734 Bytes
0618de2 2032430 def4deb 1294c96 54299e5 0618de2 fea5367 0618de2 7a679b4 0618de2 fea5367 0618de2 58be06f 0618de2 2032430 54299e5 2032430 54299e5 2032430 54299e5 2032430 54299e5 fea5367 2032430 7a679b4 58be06f 1294c96 58be06f 54299e5 0618de2 285a433 0618de2 5c16708 0618de2 92846e1 0618de2 92846e1 0618de2 d4ac0ac 0618de2 92846e1 0618de2 2032430 0618de2 2032430 54299e5 0618de2 2032430 54299e5 0618de2 2032430 54299e5 0618de2 2032430 54299e5 2032430 0618de2 54299e5 0618de2 54299e5 0618de2 80b417a 7a679b4 80b417a 7a679b4 0618de2 2032430 0618de2 2032430 0618de2 2032430 0618de2 2032430 5524706 1294c96 54299e5 1294c96 2032430 5c16708 2032430 def4deb 2032430 1294c96 2032430 54299e5 2032430 1294c96 2032430 1294c96 2032430 5c16708 2032430 5524706 54299e5 c2281d2 54299e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
# # Install core packages
# !pip install -U transformers datasets accelerate
import logging
import io
import time
import gradio as gr # β
required for progress bar
from pathlib import Path
# Python standard + ML packages
import pandas as pd
import numpy as np
import torch
from torch.utils.data import Dataset
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, precision_recall_fscore_support
# Hugging Face Hub
from huggingface_hub import hf_hub_download
# Hugging Face transformers
import transformers
from transformers import (
AutoTokenizer,
DebertaV2Tokenizer,
BertTokenizer,
BertForSequenceClassification,
AutoModelForSequenceClassification,
Trainer,
TrainingArguments
)
PERSIST_DIR = Path("/home/user/app")
MODEL_DIR = PERSIST_DIR / "saved_model"
LOG_FILE = PERSIST_DIR / "training.log"
# configure logging
log_buffer = io.StringIO()
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
handlers=[
logging.FileHandler(LOG_FILE),
logging.StreamHandler(log_buffer)
]
)
logger = logging.getLogger(__name__)
# Check versions
logger.info("Transformers version:", transformers.__version__)
# Check for GPU availability
logger.info("Transformers version: %s", torch.__version__)
logger.info("torch.cuda.is_available(): %s", torch.cuda.is_available())
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Label mapping for evaluation
label_map = {0.0: "no", 0.5: "plausibly", 1.0: "yes"}
# Custom Dataset class
class AbuseDataset(Dataset):
def __init__(self, texts, labels, tokenizer):
self.encodings = tokenizer(texts, truncation=True, padding=True, max_length=512)
self.labels = labels
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item["labels"] = torch.tensor(self.labels[idx], dtype=torch.float)
return item
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item["labels"] = torch.tensor(self.labels[idx], dtype=torch.float)
return item
# Convert label values to soft scores: "yes" = 1.0, "plausibly" = 0.5, others = 0.0
def label_row_soft(row):
labels = []
for col in label_columns:
val = str(row[col]).strip().lower()
if val == "yes":
labels.append(1.0)
elif val == "plausibly":
labels.append(0.5)
else:
labels.append(0.0)
return labels
# Function to map probabilities to 3 classes
# (0.0, 0.5, 1.0) based on thresholds
def map_to_3_classes(prob_array, low, high):
"""Map probabilities to 0.0, 0.5, 1.0 using thresholds."""
mapped = np.zeros_like(prob_array)
mapped[(prob_array > low) & (prob_array <= high)] = 0.5
mapped[prob_array > high] = 1.0
return mapped
def convert_to_label_strings(array):
"""Convert float label array to list of strings."""
return [label_map[val] for val in array.flatten()]
def tune_thresholds(probs, true_labels, verbose=True):
"""Search for best (low, high) thresholds by macro F1 score."""
best_macro_f1 = 0.0
best_low, best_high = 0.0, 0.0
for low in np.arange(0.2, 0.5, 0.05):
for high in np.arange(0.55, 0.8, 0.05):
if high <= low:
continue
pred_soft = map_to_3_classes(probs, low, high)
pred_str = convert_to_label_strings(pred_soft)
true_str = convert_to_label_strings(true_labels)
_, _, f1, _ = precision_recall_fscore_support(
true_str, pred_str,
labels=["no", "plausibly", "yes"],
average="macro",
zero_division=0
)
if verbose:
logger.info(f"low={low:.2f}, high={high:.2f} -> macro F1={f1:.3f}")
if f1 > best_macro_f1:
best_macro_f1 = f1
best_low, best_high = low, high
return best_low, best_high, best_macro_f1
def evaluate_model_with_thresholds(trainer, test_dataset):
"""Run full evaluation with automatic threshold tuning."""
logger.info("\nπ Running model predictions...")
yield "\nπ Running model predictions..."
predictions = trainer.predict(test_dataset)
probs = torch.sigmoid(torch.tensor(predictions.predictions)).numpy()
true_soft = np.array(predictions.label_ids)
logger.info("\nπ Tuning thresholds...")
yield "\nπ Tuning thresholds..."
best_low, best_high, best_f1 = tune_thresholds(probs, true_soft)
logger.info(f"\nβ
Best thresholds: low={best_low:.2f}, high={best_high:.2f} (macro F1={best_f1:.3f})")
yield f"\nβ
Best thresholds: low={best_low:.2f}, high={best_high:.2f} (macro F1={best_f1:.3f})"
final_pred_soft = map_to_3_classes(probs, best_low, best_high)
final_pred_str = convert_to_label_strings(final_pred_soft)
true_str = convert_to_label_strings(true_soft)
logger.info("\nπ Final Evaluation Report (multi-class per label):\n")
yield "\nπ Final Evaluation Report (multi-class per label):\n "
logger.info(classification_report(
true_str,
final_pred_str,
labels=["no", "plausibly", "yes"],
digits=3,
zero_division=0
))
yield classification_report(
true_str,
final_pred_str,
labels=["no", "plausibly", "yes"],
digits=3,
zero_division=0
)
def load_saved_model_and_tokenizer():
tokenizer = DebertaV2Tokenizer.from_pretrained(MODEL_DIR)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_DIR).to(device)
return tokenizer, model
def evaluate_saved_model(progress=gr.Progress(track_tqdm=True)):
if os.path.exists("saved_model/"):
yield "β
Trained model found! Skipping training...\n"
else:
yield "β No trained model found. Please train the model first.\n"
return
try:
logger.info("π Loading saved model for evaluation...")
yield "π Loading saved model for evaluation...\n"
tokenizer, model = load_saved_model_and_tokenizer()
test_dataset = AbuseDataset(test_texts, test_labels, tokenizer)
trainer = Trainer(
model=model,
args=TrainingArguments(
output_dir="./results_eval",
per_device_eval_batch_size=4,
logging_dir="./logs_eval",
disable_tqdm=True
),
eval_dataset=test_dataset
)
label_map = {0.0: "no", 0.5: "plausibly", 1.0: "yes"}
# Re-yield from generator
for line in evaluate_model_with_thresholds(trainer, test_dataset):
yield line
logger.info("β
Evaluation complete.\n")
yield "\nβ
Evaluation complete.\n"
except Exception as e:
logger.exception(f"β Evaluation failed: {e}")
yield f"β Evaluation failed: {e}\n"
token = os.environ.get("HF_TOKEN") # Reads my token from a secure hf secret
# Load dataset from Hugging Face Hub
path = hf_hub_download(
repo_id="rshakked/abusive-relashionship-stories",
filename="Abusive Relationship Stories - Technion & MSF.xlsx",
repo_type="dataset",
use_auth_token= token
)
df = pd.read_excel(path)
# Define text and label columns
text_column = "post_body"
label_columns = [
'emotional_violence', 'physical_violence', 'sexual_violence', 'spiritual_violence',
'economic_violence', 'past_offenses', 'social_isolation', 'refuses_treatment',
'suicidal_threats', 'mental_condition', 'daily_activity_control', 'violent_behavior',
'unemployment', 'substance_use', 'obsessiveness', 'jealousy', 'outbursts',
'ptsd', 'hard_childhood', 'emotional_dependency', 'prevention_of_care',
'fear_based_relationship', 'humiliation', 'physical_threats',
'presence_of_others_in_assault', 'signs_of_injury', 'property_damage',
'access_to_weapons', 'gaslighting'
]
logger.info(np.shape(df))
# Clean data
df = df[[text_column] + label_columns]
logger.info(np.shape(df))
df = df.dropna(subset=[text_column])
logger.info(np.shape(df))
df["label_vector"] = df.apply(label_row_soft, axis=1)
label_matrix = df["label_vector"].tolist()
# Proper 3-way split: train / val / test
train_val_texts, test_texts, train_val_labels, test_labels = train_test_split(
df[text_column].tolist(), label_matrix, test_size=0.2, random_state=42
)
train_texts, val_texts, train_labels, val_labels = train_test_split(
train_val_texts, train_val_labels, test_size=0.1, random_state=42
)
#model_name = "onlplab/alephbert-base"
model_name = "microsoft/deberta-v3-base"
def run_training(progress=gr.Progress(track_tqdm=True)):
if os.path.exists("saved_model/"):
yield "β
Trained model found! Skipping training...\n"
yield evaluate_saved_model()
return
yield "π Starting training...\n"
try:
logger.info("Starting training run...")
# Load pretrained model for fine-tuning
tokenizer = DebertaV2Tokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
num_labels=len(label_columns),
problem_type="multi_label_classification"
).to(device) # Move model to GPU
# gradient checkpointing helps cut memory use:
model.gradient_checkpointing_enable()
# Freeze bottom 6 layers of DeBERTa encoder
for name, param in model.named_parameters():
if any(f"encoder.layer.{i}." in name for i in range(0, 6)):
param.requires_grad = False
train_dataset = AbuseDataset(train_texts, train_labels,tokenizer)
val_dataset = AbuseDataset(val_texts, val_labels,tokenizer)
test_dataset = AbuseDataset(test_texts, test_labels,tokenizer)
# TrainingArguments for HuggingFace Trainer (logging, saving)
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
evaluation_strategy="epoch",
save_strategy="epoch",
logging_dir="./logs",
logging_steps=500,
disable_tqdm=True
)
# Train using HuggingFace Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset
)
logger.info("Training started with %d samples", len(train_dataset))
yield "π Training in progress...\n"
total_steps = len(train_dataset) * training_args.num_train_epochs // training_args.per_device_train_batch_size
intervals = max(total_steps // 20, 1)
for i in range(0, total_steps, intervals):
time.sleep(0.5)
percent = int(100 * i / total_steps)
progress(percent / 100)
yield f"β³ Progress: {percent}%\n"
# # This checks if any tensor is on GPU too early.
# logger.info("π§ͺ Sample device check from train_dataset:")
# sample = train_dataset[0]
# for k, v in sample.items():
# logger.info(f"{k}: {v.device}")
# Start training!
trainer.train()
# Save the model and tokenizer
MODEL_DIR.mkdir(parents=True, exist_ok=True)
model.save_pretrained(MODEL_DIR)
tokenizer.save_pretrained(MODEL_DIR)
logger.info(" Training completed and model saved.")
yield "π Training complete! Model saved.\n"
except Exception as e:
logger.exception( f"β Training failed: {e}")
yield f"β Training failed: {e}\n"
# Evaluation
try:
if 'trainer' in locals():
evaluate_model_with_thresholds(trainer, test_dataset)
logger.info("Evaluation completed")
except Exception as e:
logger.exception(f"Evaluation failed: {e}")
log_buffer.seek(0)
return log_buffer.read()
def push_model_to_hub():
try:
logger.info("π Pushing model to Hugging Face Hub...")
tokenizer, model = load_saved_model_and_tokenizer()
model.push_to_hub("rshakked/abuse-detector-he-en", use_auth_token=token)
tokenizer.push_to_hub("rshakked/abuse-detector-he-en", use_auth_token=token)
return "β
Model pushed to hub successfully!"
except Exception as e:
logger.exception("β Failed to push model to hub.")
return f"β Failed to push model: {e}"
|