File size: 6,541 Bytes
473311a fa29b79 eab7cdf a96c23c eab7cdf 473311a eab7cdf 473311a eab7cdf 473311a eab7cdf 473311a 99ef832 eab7cdf 99ef832 eab7cdf 473311a eab7cdf 99ef832 a96c23c 42fa481 a96c23c 99ef832 eab7cdf 8fc5d75 eab7cdf dd2241b eab7cdf 8fc5d75 99ef832 eab7cdf a96c23c 99ef832 a96c23c 42fa481 99ef832 42fa481 99ef832 473311a eab7cdf 473311a eab7cdf 473311a eab7cdf 473311a 99ef832 eab7cdf a96c23c fa29b79 a96c23c eab7cdf fa29b79 eab7cdf 473311a eab7cdf fa29b79 eab7cdf fa29b79 eab7cdf 99ef832 eab7cdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import streamlit as st
import torch
from PIL import Image
import gc
from transformers import AutoProcessor
from peft import PeftModel
from unsloth import FastVisionModel
# Simple page config
st.set_page_config(page_title="Deepfake Analyzer", layout="wide")
# Minimal UI
st.title("Deepfake Image Analyzer")
st.markdown("This app analyzes images for signs of deepfake manipulation")
# Function to free up memory
def free_memory():
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Function to fix cross-attention masks
def fix_processor_outputs(inputs):
"""Fix cross-attention mask dimensions if needed"""
if 'cross_attention_mask' in inputs and 0 in inputs['cross_attention_mask'].shape:
batch_size, seq_len, _, num_tiles = inputs['cross_attention_mask'].shape
visual_features = 6404 # The exact dimension used in training
new_mask = torch.ones(
(batch_size, seq_len, visual_features, num_tiles),
device=inputs['cross_attention_mask'].device
)
inputs['cross_attention_mask'] = new_mask
return True, inputs
return False, inputs
# Load model function
@st.cache_resource
def load_model():
"""Load model using Unsloth approach (similar to Colab)"""
try:
base_model_id = "unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit"
# Load processor
processor = AutoProcessor.from_pretrained(base_model_id)
# Load model using Unsloth's FastVisionModel
model, _ = FastVisionModel.from_pretrained(
base_model_id,
load_in_4bit=True,
torch_dtype=torch.float16,
device_map="auto"
)
# Set to inference mode
FastVisionModel.for_inference(model)
# Load adapter
adapter_id = "saakshigupta/deepfake-explainer-1"
model = PeftModel.from_pretrained(model, adapter_id)
return model, processor
except Exception as e:
st.error(f"Error loading model: {str(e)}")
st.exception(e)
return None, None
# Minimal sidebar
with st.sidebar:
st.header("Settings")
temperature = st.slider("Temperature", 0.1, 1.0, 0.7, 0.1)
max_length = st.slider("Max length", 100, 500, 300, 50)
# Instruction field
prompt = st.text_area(
"Analysis instruction",
value="Analyze this image and determine if it's a deepfake. Provide your reasoning.",
height=100
)
# Main content - two columns for clarity
col1, col2 = st.columns([1, 2])
with col1:
# Load model button
if st.button("1. Load Model"):
with st.spinner("Loading model... (this may take a minute)"):
model, processor = load_model()
if model is not None and processor is not None:
st.session_state['model'] = model
st.session_state['processor'] = processor
st.success("β Model loaded successfully!")
else:
st.error("Failed to load model")
# File uploader
uploaded_file = st.file_uploader("2. Upload an image", type=["jpg", "jpeg", "png"])
# Display uploaded image
if uploaded_file is not None:
image = Image.open(uploaded_file).convert('RGB')
st.image(image, caption="Uploaded Image", use_column_width=True)
# Only enable analysis if model is loaded
model_loaded = 'model' in st.session_state and st.session_state['model'] is not None
if st.button("3. Analyze Image", disabled=not model_loaded):
if not model_loaded:
st.warning("Please load the model first")
else:
col2.subheader("Analysis Results")
with col2.spinner("Analyzing image..."):
try:
# Get model components
model = st.session_state['model']
processor = st.session_state['processor']
# Format message for analysis
messages = [
{"role": "user", "content": [
{"type": "image"},
{"type": "text", "text": prompt}
]}
]
# Apply chat template
input_text = processor.tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
# Process with image
inputs = processor(
images=image,
text=input_text,
add_special_tokens=False,
return_tensors="pt"
).to(model.device)
# Apply the fix
fixed, inputs = fix_processor_outputs(inputs)
if fixed:
col2.info("Fixed cross-attention mask dimensions")
# Generate analysis
with torch.no_grad():
output_ids = model.generate(
**inputs,
max_new_tokens=max_length,
temperature=temperature,
top_p=0.9
)
# Decode the output
response = processor.tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Display results
col2.success("Analysis complete!")
col2.markdown(response)
# Free memory
free_memory()
except Exception as e:
col2.error(f"Error analyzing image: {str(e)}")
col2.exception(e)
elif not model_loaded:
st.info("Please load the model first (Step 1)")
else:
st.info("Please upload an image (Step 2)")
with col2:
if 'model' not in st.session_state:
st.info("π Follow the steps on the left to analyze an image") |