File size: 8,354 Bytes
473311a
 
 
9938609
fa29b79
a96c23c
 
473311a
 
 
99ef832
473311a
 
 
 
 
 
 
 
99ef832
 
 
 
 
 
42fa481
99ef832
 
 
 
 
 
 
 
 
 
 
473311a
 
24cd4f4
99ef832
a96c23c
 
42fa481
a96c23c
 
99ef832
24cd4f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99ef832
a96c23c
99ef832
 
 
a96c23c
42fa481
99ef832
 
42fa481
99ef832
473311a
 
 
99ef832
473311a
 
99ef832
 
 
 
 
473311a
99ef832
 
473311a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99ef832
 
 
 
 
 
 
 
 
 
 
 
 
fa29b79
 
a96c23c
fa29b79
a96c23c
 
fa29b79
a96c23c
fa29b79
 
 
 
 
 
473311a
 
 
 
99ef832
42fa481
99ef832
fa29b79
473311a
 
 
 
fa29b79
 
 
 
 
 
 
 
 
a96c23c
fa29b79
a96c23c
 
fa29b79
a96c23c
fa29b79
 
 
 
a96c23c
 
 
 
fa29b79
 
 
 
 
 
 
 
 
a96c23c
fa29b79
a96c23c
 
 
fa29b79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99ef832
fa29b79
 
99ef832
fa29b79
 
 
 
 
473311a
99ef832
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import streamlit as st
import torch
from PIL import Image
import os
import gc
from transformers import AutoProcessor, AutoModelForCausalLM
from peft import PeftModel

# Page config
st.set_page_config(
    page_title="Deepfake Image Analyzer",
    page_icon="πŸ”",
    layout="wide"
)

# App title and description
st.title("Deepfake Image Analyzer")
st.markdown("Upload an image to analyze it for possible deepfake manipulation")

# Function to free up memory
def free_memory():
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()

# Helper function to check CUDA
def init_device():
    if torch.cuda.is_available():
        st.sidebar.success("βœ“ GPU available: Using CUDA")
        return "cuda"
    else:
        st.sidebar.warning("⚠️ No GPU detected: Using CPU (analysis will be slow)")
        return "cpu"

# Set device
device = init_device()

@st.cache_resource
def load_model():
    """Load model with fallback options for quantization"""
    try:
        # Using your original base model
        base_model_id = "unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit"
        
        # Load processor
        processor = AutoProcessor.from_pretrained(base_model_id)
        
        # Try to load with 4-bit quantization first
        try:
            import bitsandbytes
            model = AutoModelForCausalLM.from_pretrained(
                base_model_id,
                device_map="auto",
                load_in_4bit=True,
                torch_dtype=torch.float16
            )
        except ImportError:
            st.warning("bitsandbytes not available. Falling back to float16 precision.")
            model = AutoModelForCausalLM.from_pretrained(
                base_model_id,
                device_map="auto",
                torch_dtype=torch.float16
            )
        
        # Load adapter
        adapter_id = "saakshigupta/deepfake-explainer-1"
        model = PeftModel.from_pretrained(model, adapter_id)
        
        return model, processor
    
    except Exception as e:
        st.error(f"Error loading model: {str(e)}")
        st.exception(e)
        return None, None

# Function to fix cross-attention masks
def fix_processor_outputs(inputs):
    """Fix cross-attention mask dimensions if needed"""
    if 'cross_attention_mask' in inputs and 0 in inputs['cross_attention_mask'].shape:
        batch_size, seq_len, _, num_tiles = inputs['cross_attention_mask'].shape
        visual_features = 6404  # The exact dimension used in training
        new_mask = torch.ones(
            (batch_size, seq_len, visual_features, num_tiles),
            device=inputs['cross_attention_mask'].device
        )
        inputs['cross_attention_mask'] = new_mask
        return True, inputs
    return False, inputs

# Create sidebar with options
with st.sidebar:
    st.header("Options")
    temperature = st.slider("Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.1,
                           help="Higher values make output more random, lower values more deterministic")
    max_length = st.slider("Maximum response length", min_value=100, max_value=1000, value=500, step=50)
    
    custom_prompt = st.text_area(
        "Custom instruction (optional)",
        value="Analyze this image and determine if it's a deepfake. Provide both technical and non-technical explanations.",
        height=100
    )
    
    st.markdown("### About")
    st.markdown("""
    This app uses a fine-tuned Llama 3.2 Vision model to detect and explain deepfakes.
    
    The analyzer looks for:
    - Inconsistencies in facial features
    - Unusual lighting or shadows
    - Unnatural blur patterns
    - Artifacts around edges
    - Texture inconsistencies
    
    Model by [saakshigupta](https://huggingface.co/saakshigupta/deepfake-explainer-1)
    """)

# Load model button
if st.button("Load Model"):
    with st.spinner("Loading model... this may take several minutes"):
        try:
            model, processor = load_model()
            if model is not None and processor is not None:
                st.session_state['model'] = model
                st.session_state['processor'] = processor
                st.success("Model loaded successfully!")
            else:
                st.error("Failed to load model.")
        except Exception as e:
            st.error(f"Error during model loading: {str(e)}")
            st.exception(e)

# Main content area - file uploader
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])

# Check if model is loaded
model_loaded = 'model' in st.session_state and st.session_state['model'] is not None

if uploaded_file is not None:
    # Display the image
    image = Image.open(uploaded_file).convert('RGB')
    st.image(image, caption="Uploaded Image", use_column_width=True)
    
    # Analyze button (only enabled if model is loaded)
    if st.button("Analyze Image", disabled=not model_loaded):
        if not model_loaded:
            st.warning("Please load the model first by clicking the 'Load Model' button.")
        else:
            with st.spinner("Analyzing the image... This may take 15-30 seconds"):
                try:
                    # Get components from session state
                    model = st.session_state['model']
                    processor = st.session_state['processor']
                    
                    # Process the image using the processor
                    inputs = processor(text=custom_prompt, images=image, return_tensors="pt")
                    
                    # Fix cross-attention mask if needed
                    fixed, inputs = fix_processor_outputs(inputs)
                    if fixed:
                        st.info("Fixed cross-attention mask dimensions")
                    
                    # Move to device
                    inputs = {k: v.to(model.device) for k, v in inputs.items() if isinstance(v, torch.Tensor)}
                    
                    # Generate the analysis
                    with torch.no_grad():
                        output_ids = model.generate(
                            **inputs,
                            max_new_tokens=max_length,
                            temperature=temperature,
                            top_p=0.9
                        )
                    
                    # Decode the output
                    response = processor.decode(output_ids[0], skip_special_tokens=True)
                    
                    # Extract the actual response (removing the prompt)
                    if custom_prompt in response:
                        result = response.split(custom_prompt)[-1].strip()
                    else:
                        result = response
                    
                    # Display result in a nice format
                    st.success("Analysis complete!")
                    
                    # Show technical and non-technical explanations separately if they exist
                    if "Technical Explanation:" in result and "Non-Technical Explanation:" in result:
                        technical, non_technical = result.split("Non-Technical Explanation:")
                        technical = technical.replace("Technical Explanation:", "").strip()
                        
                        col1, col2 = st.columns(2)
                        with col1:
                            st.subheader("Technical Analysis")
                            st.write(technical)
                        
                        with col2:
                            st.subheader("Simple Explanation")
                            st.write(non_technical)
                    else:
                        st.subheader("Analysis Result")
                        st.write(result)
                    
                    # Free memory after analysis
                    free_memory()
                    
                except Exception as e:
                    st.error(f"Error analyzing image: {str(e)}")
                    st.exception(e)
    elif not model_loaded:
        st.warning("Please load the model first by clicking the 'Load Model' button at the top of the page.")
else:
    st.info("Please upload an image to begin analysis")

# Add footer
st.markdown("---")
st.markdown("Deepfake Image Analyzer")