Spaces:
Running
Running
File size: 14,322 Bytes
e8ef368 71c9483 a3cc5d4 71c9483 3ce5085 a5109c6 db82fa4 246525b e8ef368 79ceaaf 0842811 71c9483 d490720 71c9483 e8ef368 71c9483 1ed7eae 71c9483 e6f1ab4 71c9483 0842811 b5c4f55 112e707 0842811 b5c4f55 112e707 60fad09 112e707 60fad09 fddb1a0 60fad09 112e707 b5c4f55 3ce5085 87a5f3d 3ce5085 ea19a45 e8ef368 e59f632 3ce5085 e59f632 3ce5085 e59f632 a3cc5d4 e59f632 a3cc5d4 e8ef368 a3cc5d4 e59f632 e8ef368 aa9bf16 0842811 aa9bf16 71c9483 aa9bf16 e815298 233ab66 e815298 b5c4f55 233ab66 db40c74 09fd8b1 db40c74 09fd8b1 db40c74 09fd8b1 db40c74 b5c4f55 1eb7421 db40c74 e8ef368 d228bc3 e8ef368 d228bc3 ea3c5b4 09fd8b1 24cc195 b5c4f55 db40c74 2bedcbe 0842811 db40c74 3ed8bd4 db40c74 3ed8bd4 db40c74 b5a0cbf b5c4f55 c226cdf e8ef368 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
# import gradio as gr
import os
import torch
from transformers import AutoProcessor, MllamaForConditionalGeneration, TextIteratorStreamer
from PIL import Image
import spaces
import tempfile
import requests
from PyPDF2 import PdfReader
from threading import Thread
from flask import Flask, request, jsonify
import io
import fitz
# Check if we're running in a Hugging Face Space and if SPACES_ZERO_GPU is enabled
# IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
# IS_SPACE = os.environ.get("SPACE_ID", None) is not None
# Determine the device (GPU if available, else CPU)
device = "cuda" if torch.cuda.is_available() else "cpu"
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
print(f"Using device: {device}")
print(f"Low memory mode: {LOW_MEMORY}")
app = Flask(__name__)
# Get Hugging Face token from environment variables
HF_TOKEN = os.environ.get('HF_TOKEN')
# Load the model and processor
model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct"
model = MllamaForConditionalGeneration.from_pretrained(
model_name,
use_auth_token=HF_TOKEN,
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32,
device_map="auto" if device == "cuda" else None, # Use device mapping if CUDA is available
)
# Move the model to the appropriate device (GPU if available)
# model.to(device)
processor = AutoProcessor.from_pretrained(model_name, use_auth_token=HF_TOKEN)
def extract_image_from_pdf(pdf_url, dpi=75):
"""
Extract first page of PDF as image in memory
Args:
pdf_url (str): URL of PDF
dpi (int): Image resolution
Returns:
PIL.Image: First page as image or None
"""
try:
# Download PDF
response = requests.get(pdf_url, timeout=30)
response.raise_for_status()
# Open PDF from bytes
pdf_document = fitz.open(stream=response.content, filetype="pdf")
# Get first page
first_page = pdf_document[0]
# Render page to pixmap
pix = first_page.get_pixmap(matrix=fitz.Matrix(dpi/72, dpi/72))
# Convert to PIL Image
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
pdf_document.close()
return img
except Exception as e:
print(f"Error extracting first page: {e}")
return None
def predict_image(image_url, text, file_pref):
try:
# Download the image from the URL
# response = requests.get(image_url)
# response.raise_for_status() # Raise an error for invalid responses
# image = Image.open(io.BytesIO(response.content)).convert("RGB")
if file_pref == 'img':
response = requests.get(image_url)
response.raise_for_status() # Raise an error for invalid responses
image = Image.open(io.BytesIO(response.content)).convert("RGB")
else:
image = extract_image_from_pdf(image_url)
messages = [
{"role": "user", "content": [
{"type": "image"}, # Specify that an image is provided
{"type": "text", "text": text} # Add the user-provided text input
]}
]
# Create the input text using the processor's chat template
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
# Process the inputs and move to the appropriate device
inputs = processor(image, input_text, return_tensors="pt").to(device)
# outputs = model.generate(**inputs, max_new_tokens=100)
# # Decode the output to return the final response
# response = processor.decode(outputs[0], skip_special_tokens=True)
# return response
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=4096)
generated_text = ""
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
# generated_text_without_prompt = buffer
# # time.sleep(0.01)
# yield buffer
return buffer
except Exception as e:
raise ValueError(f"Error during prediction: {str(e)}")
def extract_text_from_pdf(pdf_url):
try:
response = requests.get(pdf_url)
response.raise_for_status()
with tempfile.NamedTemporaryFile(delete=False) as temp_pdf:
temp_pdf.write(response.content)
temp_pdf_path = temp_pdf.name
reader = PdfReader(temp_pdf_path)
text = ""
for page in reader.pages:
text += page.extract_text()
os.remove(temp_pdf_path)
return text
except Exception as e:
raise ValueError(f"Error extracting text from PDF: {str(e)}")
# raise HTTPException(status_code=400, detail=f"Error extracting text from PDF: {str(e)}")
@spaces.GPU
def predict_text(text):
# pdf_text = extract_text_from_pdf('https://arinsight.co/2024_FA_AEC_1200_GR1_GR2.pdf')
text_combined = text # + "\n\nExtracted Text from PDF:\n" + pdf_text
# Prepare the input messages
messages = [{"role": "user", "content": [{"type": "text", "text": text_combined}]}]
# Create the input text using the processor's chat template
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
# Process the inputs and move to the appropriate device
# inputs = processor(image, input_text, return_tensors="pt").to(device)
inputs = processor(text=input_text, return_tensors="pt").to("cuda")
# Generate a response from the model
# outputs = model.generate(**inputs, max_new_tokens=1024)
# # Decode the output to return the final response
# response = processor.decode(outputs[0], skip_special_tokens=True, skip_prompt=True)
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=2048)
generated_text = ""
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
# generated_text_without_prompt = buffer
# # time.sleep(0.01)
# yield buffer
return buffer
PROMPT = (
"Extract the following information as per this format:\n"
"'Course Code:'\n"
"'Course Name:'\n"
"'Course Description:'\n"
"'Course Credits:'\n"
"'Course Learning Outcomes:'\n"
"'Delivery Method:'\n"
"'Prerequisite(s):'\n"
"'Co-requisite(s):'\n"
"'Materials:'\n"
"'Topical Outline:'\n"
"Do not add anything else except the required information from this text."
)
PROMPT_SKILLS = (
"Provide skills based on the Lightcast Open Skills Taxonomy in categories as:\n"
"'Primary Skills' (the degree program or certification),\n"
"'Secondary Skills', and\n"
"'Tertiary Skills'."
)
# PROMPT_IMAGE = (
# "You are a highly intelligent assistant designed to analyze images and extract structured information from them. "
# "Your task is to analyze the given image of a student's academic record and generate a response in the exact JSON format provided below. "
# "If any specific information is missing or unavailable in the image, replace the corresponding field with null. "
# "Ensure the format is consistent, strictly adhering to the structure shown below.\n\n"
# "Required JSON Format:\n\n"
# "{\n"
# ' "student": {\n'
# ' "name": "string",\n'
# ' "id": "string",\n'
# ' "dob": "string",\n'
# ' "original_start_date": "string",\n'
# ' "cumulative_gpa": "string",\n'
# ' "program": "string",\n'
# ' "status": "string"\n'
# ' },\n'
# ' "courses": [\n'
# ' {\n'
# ' "transfer_institution": "string",\n'
# ' "course_code": "string",\n'
# ' "course_name": "string",\n'
# ' "credits_attempted": number,\n'
# ' "credits_earned": number,\n'
# ' "grade": "string",\n'
# ' "quality_points": number,\n'
# ' "semester_code": "string",\n'
# ' "semester_dates": "string"\n'
# ' }\n'
# " // Additional courses can be added here\n"
# " ]\n"
# "}\n\n"
# "Instructions:\n\n"
# "1. Extract the student information and course details as displayed in the image.\n"
# "2. Use null for any missing or unavailable information.\n"
# "3. Format the extracted data exactly as shown above. Do not deviate from this structure.\n"
# "4. Use accurate field names and ensure proper nesting of data (e.g., 'student' and 'courses' sections).\n"
# "5. The values for numeric fields like credits_attempted, credits_earned, and quality_points should be numbers (not strings).\n"
# )
PROMPT_IMAGE_STUDENT = (
"You are a highly intelligent assistant designed to analyze images and extract structured information from them. "
"Your task is to analyze the given image of a student's academic record and generate a response in the exact JSON format provided below. "
"If any specific information is missing or unavailable in the image, replace the corresponding field with null. "
"Ensure the format is consistent, strictly adhering to the structure shown below.\n\n"
"Required JSON Format:\n\n"
"{\n"
' "student": {\n'
' "name": "string",\n'
' "id": "string",\n'
' "dob": "string",\n'
' "original_start_date": "string",\n'
' "cumulative_gpa": "string",\n'
' "program": "string",\n'
' "status": "string"\n'
' }\n'
"}\n\n"
"Instructions:\n\n"
"1. Extract the student's general information as displayed in the image.\n"
"2. Use null for any missing or unavailable information.\n"
"3. Format the extracted data exactly as shown above. Do not deviate from this structure.\n"
"4. Ensure accurate field names and proper nesting.\n"
"5. Return only the 'student' section as JSON.\n"
)
PROMPT_IMAGE_COURSES = (
"You are a highly intelligent assistant designed to analyze images and extract structured information from them. "
"Your task is to analyze the given image of a student's academic record and generate a response in the exact JSON format provided below. "
"If any specific information is missing or unavailable in the image, replace the corresponding field with null. "
"Ensure the format is consistent, strictly adhering to the structure shown below.\n\n"
"Required JSON Format:\n\n"
"{\n"
' "courses": [\n'
' {\n'
' "transfer_institution": "string",\n'
' "course_code": "string",\n'
' "course_name": "string",\n'
' "credits_attempted": number,\n'
' "credits_earned": number,\n'
' "grade": "string",\n'
' "quality_points": number,\n'
' "semester_code": "string",\n'
' "semester_dates": "string"\n'
' }\n'
" // Additional courses can be added here\n"
" ]\n"
"}\n\n"
"Instructions:\n\n"
"1. Extract the course details as displayed in the image.\n"
"2. Use null for any missing or unavailable information.\n"
"3. Format the extracted data exactly as shown above. Do not deviate from this structure.\n"
"4. Ensure accurate field names and proper nesting.\n"
"5. Return only the 'courses' section as JSON.\n"
)
@app.route("/", methods=["GET"])
def home():
return jsonify({"message": "Welcome to the PDF Extraction API. Use the /extract endpoint to extract information."})
@app.route("/favicon.ico")
def favicon():
return "", 204
@app.route("/extract", methods=["POST"])
def extract_info():
data = request.json
if not data:
return jsonify({"error": "Please provide a PDF URL in the request body."}), 400
try:
if data["url"] is not None:
pdf_url = data["url"]
pdf_text = extract_text_from_pdf(pdf_url)
prompt = f"{PROMPT}\n\n{pdf_text}"
response = predict_text(prompt)
else:
response = ''
if data["skills"] == True:
if response:
prompt_skills = f"{PROMPT_SKILLS} using this information only -- {response}"
response_skills = predict_text(prompt_skills)
else:
response_skills = ''
else:
response_skills = ''
if data["img_url"] is not None:
prompt_student = f"{PROMPT_IMAGE_STUDENT}\n"
prompt_courses = f"{PROMPT_IMAGE_COURSES}\n"
img_url = data["img_url"]
file_pref = data["file_pref"]
response_student = predict_image(img_url, prompt_student, file_pref)
response_courses = predict_image(img_url, prompt_courses, file_pref)
response_image = response_student + response_courses
# response_image = {"student": response_student.get("student", {}), "courses": response_courses.get("courses", [])}
else:
response_image = ''
return jsonify({"extracted_info": response + "\n" + response_skills + "\n" + response_image})
except Exception as e:
return jsonify({"error": str(e)}), 500
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860)
# # Define the Gradio interface
# interface = gr.Interface(
# fn=predict_text,
# inputs=[
# # gr.Image(type="pil", label="Image Input"), # Image input with label
# gr.Textbox(label="Text Input") # Textbox input with label
# ],
# outputs=gr.Textbox(label="Generated Response"), # Output with a more descriptive label
# title="Llama 3.2 11B Vision Instruct Demo", # Title of the interface
# description="This demo uses Meta's Llama 3.2 11B Vision model to generate responses based on an image and text input.", # Short description
# theme="compact" # Using a compact theme for a cleaner look
# )
# # Launch the interface
# interface.launch(debug=True) |