File size: 5,034 Bytes
71c9483
 
 
a3cc5d4
71c9483
 
3ce5085
a5109c6
db82fa4
71c9483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dcef5f
71c9483
 
 
 
 
 
 
 
 
 
 
05271e3
 
 
 
 
 
 
 
 
71c9483
05271e3
 
71c9483
05271e3
 
71c9483
05271e3
 
71c9483
05271e3
 
 
3ce5085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87a5f3d
 
3ce5085
ea19a45
3ce5085
87a5f3d
ba6c1b6
e59f632
3ce5085
e59f632
 
 
 
 
 
3ce5085
e59f632
a3cc5d4
e59f632
a3cc5d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e59f632
 
71c9483
 
e59f632
71c9483
e59f632
71c9483
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
import os
import torch
from transformers import AutoProcessor, MllamaForConditionalGeneration, TextIteratorStreamer
from PIL import Image
import spaces
import tempfile
import requests
from PyPDF2 import PdfReader

# Check if we're running in a Hugging Face Space and if SPACES_ZERO_GPU is enabled
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
IS_SPACE = os.environ.get("SPACE_ID", None) is not None

# Determine the device (GPU if available, else CPU)
device = "cuda" if torch.cuda.is_available() else "cpu"
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"

print(f"Using device: {device}")
print(f"Low memory mode: {LOW_MEMORY}")

# Get Hugging Face token from environment variables
HF_TOKEN = os.environ.get('HF_TOKEN')

# Load the model and processor
model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct"
model = MllamaForConditionalGeneration.from_pretrained(
    model_name,
    use_auth_token=HF_TOKEN,
    torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32,
    device_map="auto" if device == "cuda" else None,  # Use device mapping if CUDA is available
)

# Move the model to the appropriate device (GPU if available)
model.to(device)
processor = AutoProcessor.from_pretrained(model_name, use_auth_token=HF_TOKEN)

# @spaces.GPU  # Use the free GPU provided by Hugging Face Spaces
# def predict(image, text):
#     # Prepare the input messages
#     messages = [
#         {"role": "user", "content": [
#             {"type": "image"},  # Specify that an image is provided
#             {"type": "text", "text": text}  # Add the user-provided text input
#         ]}
#     ]
    
#     # Create the input text using the processor's chat template
#     input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
    
#     # Process the inputs and move to the appropriate device
#     inputs = processor(image, input_text, return_tensors="pt").to(device)
    
#     # Generate a response from the model
#     outputs = model.generate(**inputs, max_new_tokens=100)
    
#     # Decode the output to return the final response
#     response = processor.decode(outputs[0], skip_special_tokens=True)
#     return response

def extract_text_from_pdf(pdf_url):
    try:
        response = requests.get(pdf_url)
        response.raise_for_status()
        with tempfile.NamedTemporaryFile(delete=False) as temp_pdf:
            temp_pdf.write(response.content)
            temp_pdf_path = temp_pdf.name
        
        reader = PdfReader(temp_pdf_path)
        text = ""
        for page in reader.pages:
            text += page.extract_text()
        
        os.remove(temp_pdf_path)
        return text
    except Exception as e:
        raise ValueError(f"Error extracting text from PDF: {str(e)}")
# raise HTTPException(status_code=400, detail=f"Error extracting text from PDF: {str(e)}")

@spaces.GPU
def predict_text(text, url = 'https://arinsight.co/2024_FA_AEC_1200_GR1_GR2.pdf'):
    pdf_text = extract_text_from_pdf('https://arinsight.co/2024_FA_AEC_1200_GR1_GR2.pdf')
    text_combined = text + "\n\nExtracted Text from PDF:\n" + pdf_text
    # Prepare the input messages
    messages = [{"role": "user", "content": [{"type": "text", "text": text_combined}]}]
    
    # Create the input text using the processor's chat template
    input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
    
    # Process the inputs and move to the appropriate device
    # inputs = processor(image, input_text, return_tensors="pt").to(device)
    inputs = processor(text=input_text, return_tensors="pt").to("cuda")
    # Generate a response from the model
    # outputs = model.generate(**inputs, max_new_tokens=1024)
    
    # # Decode the output to return the final response
    # response = processor.decode(outputs[0], skip_special_tokens=True, skip_prompt=True)


    streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)

    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
    generated_text = ""
    
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    
    for new_text in streamer:
        buffer += new_text
        # generated_text_without_prompt = buffer
        # # time.sleep(0.01)
        # yield buffer
    
    return buffer


# Define the Gradio interface
interface = gr.Interface(
    fn=predict_text,
    inputs=[
        # gr.Image(type="pil", label="Image Input"),  # Image input with label
        gr.Textbox(label="Text Input")  # Textbox input with label
    ],
    outputs=gr.Textbox(label="Generated Response"),  # Output with a more descriptive label
    title="Llama 3.2 11B Vision Instruct Demo",  # Title of the interface
    description="This demo uses Meta's Llama 3.2 11B Vision model to generate responses based on an image and text input.",  # Short description
    theme="compact"  # Using a compact theme for a cleaner look
)

# Launch the interface
interface.launch(debug=True)