Spaces:
Running
Running
File size: 5,034 Bytes
71c9483 a3cc5d4 71c9483 3ce5085 a5109c6 db82fa4 71c9483 1dcef5f 71c9483 05271e3 71c9483 05271e3 71c9483 05271e3 71c9483 05271e3 71c9483 05271e3 3ce5085 87a5f3d 3ce5085 ea19a45 3ce5085 87a5f3d ba6c1b6 e59f632 3ce5085 e59f632 3ce5085 e59f632 a3cc5d4 e59f632 a3cc5d4 e59f632 71c9483 e59f632 71c9483 e59f632 71c9483 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import gradio as gr
import os
import torch
from transformers import AutoProcessor, MllamaForConditionalGeneration, TextIteratorStreamer
from PIL import Image
import spaces
import tempfile
import requests
from PyPDF2 import PdfReader
# Check if we're running in a Hugging Face Space and if SPACES_ZERO_GPU is enabled
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
IS_SPACE = os.environ.get("SPACE_ID", None) is not None
# Determine the device (GPU if available, else CPU)
device = "cuda" if torch.cuda.is_available() else "cpu"
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
print(f"Using device: {device}")
print(f"Low memory mode: {LOW_MEMORY}")
# Get Hugging Face token from environment variables
HF_TOKEN = os.environ.get('HF_TOKEN')
# Load the model and processor
model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct"
model = MllamaForConditionalGeneration.from_pretrained(
model_name,
use_auth_token=HF_TOKEN,
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32,
device_map="auto" if device == "cuda" else None, # Use device mapping if CUDA is available
)
# Move the model to the appropriate device (GPU if available)
model.to(device)
processor = AutoProcessor.from_pretrained(model_name, use_auth_token=HF_TOKEN)
# @spaces.GPU # Use the free GPU provided by Hugging Face Spaces
# def predict(image, text):
# # Prepare the input messages
# messages = [
# {"role": "user", "content": [
# {"type": "image"}, # Specify that an image is provided
# {"type": "text", "text": text} # Add the user-provided text input
# ]}
# ]
# # Create the input text using the processor's chat template
# input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
# # Process the inputs and move to the appropriate device
# inputs = processor(image, input_text, return_tensors="pt").to(device)
# # Generate a response from the model
# outputs = model.generate(**inputs, max_new_tokens=100)
# # Decode the output to return the final response
# response = processor.decode(outputs[0], skip_special_tokens=True)
# return response
def extract_text_from_pdf(pdf_url):
try:
response = requests.get(pdf_url)
response.raise_for_status()
with tempfile.NamedTemporaryFile(delete=False) as temp_pdf:
temp_pdf.write(response.content)
temp_pdf_path = temp_pdf.name
reader = PdfReader(temp_pdf_path)
text = ""
for page in reader.pages:
text += page.extract_text()
os.remove(temp_pdf_path)
return text
except Exception as e:
raise ValueError(f"Error extracting text from PDF: {str(e)}")
# raise HTTPException(status_code=400, detail=f"Error extracting text from PDF: {str(e)}")
@spaces.GPU
def predict_text(text, url = 'https://arinsight.co/2024_FA_AEC_1200_GR1_GR2.pdf'):
pdf_text = extract_text_from_pdf('https://arinsight.co/2024_FA_AEC_1200_GR1_GR2.pdf')
text_combined = text + "\n\nExtracted Text from PDF:\n" + pdf_text
# Prepare the input messages
messages = [{"role": "user", "content": [{"type": "text", "text": text_combined}]}]
# Create the input text using the processor's chat template
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
# Process the inputs and move to the appropriate device
# inputs = processor(image, input_text, return_tensors="pt").to(device)
inputs = processor(text=input_text, return_tensors="pt").to("cuda")
# Generate a response from the model
# outputs = model.generate(**inputs, max_new_tokens=1024)
# # Decode the output to return the final response
# response = processor.decode(outputs[0], skip_special_tokens=True, skip_prompt=True)
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
generated_text = ""
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
# generated_text_without_prompt = buffer
# # time.sleep(0.01)
# yield buffer
return buffer
# Define the Gradio interface
interface = gr.Interface(
fn=predict_text,
inputs=[
# gr.Image(type="pil", label="Image Input"), # Image input with label
gr.Textbox(label="Text Input") # Textbox input with label
],
outputs=gr.Textbox(label="Generated Response"), # Output with a more descriptive label
title="Llama 3.2 11B Vision Instruct Demo", # Title of the interface
description="This demo uses Meta's Llama 3.2 11B Vision model to generate responses based on an image and text input.", # Short description
theme="compact" # Using a compact theme for a cleaner look
)
# Launch the interface
interface.launch(debug=True) |