File size: 1,590 Bytes
d2ef00f
 
bc8d8e3
60fdc18
d2ef00f
 
 
 
 
60fdc18
bc8d8e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2ef00f
bc8d8e3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from transformers import AutoTokenizer, AutoModel
import torch
import numpy as np

# Use a model with PyTorch weights available
MODEL_NAME = "thenlper/gte-small"

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModel.from_pretrained(MODEL_NAME)

def get_embeddings(texts, max_length=512):
    """
    Generate embeddings for long text by chunking and averaging.

    Args:
        texts (str or list): One or multiple texts to embed.
        max_length (int): Maximum tokens per chunk (default is 512).

    Returns:
        np.ndarray: Averaged embeddings.
    """
    if isinstance(texts, str):
        texts = [texts]

    final_embeddings = []

    for text in texts:
        # Tokenize and split into chunks
        tokens = tokenizer.tokenize(text)
        chunks = [tokens[i:i + max_length] for i in range(0, len(tokens), max_length)]

        chunk_embeddings = []

        for chunk in chunks:
            input_ids = tokenizer.convert_tokens_to_ids(chunk)
            input_ids = torch.tensor([input_ids])
            with torch.no_grad():
                output = model(input_ids=input_ids)
                embedding = output.last_hidden_state.mean(dim=1)  # Mean pooling
                chunk_embeddings.append(embedding)

        # Average embeddings of all chunks
        if chunk_embeddings:
            avg_embedding = torch.stack(chunk_embeddings).mean(dim=0)
            final_embeddings.append(avg_embedding.squeeze(0).numpy())
        else:
            final_embeddings.append(np.zeros(model.config.hidden_size))

    return np.array(final_embeddings)