Spaces:
Sleeping
Sleeping
import os | |
from langgraph.graph import StateGraph, START, MessagesState | |
from langgraph.prebuilt import ToolNode, tools_condition | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_groq import ChatGroq | |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader | |
from langchain_community.vectorstores import SupabaseVectorStore | |
from langchain_core.messages import SystemMessage, HumanMessage | |
from langchain_core.tools import tool | |
from supabase.client import create_client, Client | |
# Load environment variables | |
# ---- Basic Arithmetic Utilities ---- # | |
def multiply(a: int, b: int) -> int: | |
"""Returns the product of two integers.""" | |
return a * b | |
def add(a: int, b: int) -> int: | |
"""Returns the sum of two integers.""" | |
return a + b | |
def subtract(a: int, b: int) -> int: | |
"""Returns the difference between two integers.""" | |
return a - b | |
def divide(a: int, b: int) -> float: | |
"""Performs division and handles zero division errors.""" | |
if b == 0: | |
raise ValueError("Division by zero is undefined.") | |
return a / b | |
def modulus(a: int, b: int) -> int: | |
"""Returns the remainder after division.""" | |
return a % b | |
# ---- Search Tools ---- # | |
def search_wikipedia(query: str) -> str: | |
"""Search Wikipedia for a query and return maximum 2 results. | |
Args: | |
query: The search query.""" | |
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
for doc in search_docs | |
]) | |
return {"wiki_results": formatted_search_docs} | |
def search_web(query: str) -> str: | |
"""Search Tavily for a query and return maximum 3 results. | |
Args: | |
query: The search query.""" | |
search_docs = TavilySearchResults(max_results=3).invoke(query=query) | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
for doc in search_docs | |
]) | |
return {"web_results": formatted_search_docs} | |
def search_arxiv(query: str) -> str: | |
"""Search Arxiv for a query and return maximum 3 result. | |
Args: | |
query: The search query.""" | |
search_docs = ArxivLoader(query=query, load_max_docs=3).load() | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' | |
for doc in search_docs | |
]) | |
return {"arvix_results": formatted_search_docs} | |
system_message = SystemMessage(content="""You are a helpful assistant tasked with answering questions using a set of tools. | |
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: | |
FINAL ANSWER: [YOUR FINAL ANSWER]. | |
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. | |
Your answer should only start with "FINAL ANSWER: ", then follows with the answer. """) | |
toolset = [ | |
multiply, | |
add, | |
subtract, | |
divide, | |
modulus, | |
search_wikipedia, | |
search_web, | |
search_arxiv, | |
] | |
# ---- Graph Construction ---- # | |
def create_agent_flow(provider: str = "groq"): | |
"""Constructs the LangGraph conversational flow with tool support.""" | |
if provider == "google": | |
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) | |
elif provider == "groq": | |
llm = ChatGroq(api_key="secret key" , model="qwen-qwq-32b", temperature=0) | |
elif provider == "huggingface": | |
llm = ChatHuggingFace(llm=HuggingFaceEndpoint( | |
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", | |
temperature=0 | |
)) | |
else: | |
raise ValueError("Unsupported provider. Choose from: 'google', 'groq', 'huggingface'.") | |
llm_toolchain = llm.bind_tools(toolset) | |
# Assistant node behavior | |
def assistant_node(state: MessagesState): | |
response = llm_toolchain.invoke(state["messages"]) | |
return {"messages": [response]} | |
# Build the conversational graph | |
graph01 = StateGraph(MessagesState) | |
graph01.add_node("assistant", assistant_node) | |
graph01.add_node("tools", ToolNode(toolset)) | |
graph01.add_edge(START, "assistant") | |
graph01.add_conditional_edges("assistant", tools_condition) | |
graph01.add_edge("tools", "assistant") | |
return graph01.compile() | |
if __name__ == "__main__": | |
question = "What is the capital of France?" | |
# Build the graph | |
compiled_graph = create_agent_flow(provider="groq") | |
# Prepare input messages | |
messages = [system_message, HumanMessage(content=question)] | |
# Run the graph | |
output_state = compiled_graph.invoke({"messages": messages}) | |
# Print the final output | |
for m in output_state["messages"]: | |
print(m.content) | |