agents_course / agents.py
samoye16's picture
Update agents.py
fe32371 verified
import os
from langgraph.graph import StateGraph, START, MessagesState
from langgraph.prebuilt import ToolNode, tools_condition
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from supabase.client import create_client, Client
# Load environment variables
# ---- Basic Arithmetic Utilities ---- #
@tool
def multiply(a: int, b: int) -> int:
"""Returns the product of two integers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Returns the sum of two integers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Returns the difference between two integers."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Performs division and handles zero division errors."""
if b == 0:
raise ValueError("Division by zero is undefined.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Returns the remainder after division."""
return a % b
# ---- Search Tools ---- #
@tool
def search_wikipedia(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"wiki_results": formatted_search_docs}
@tool
def search_web(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"web_results": formatted_search_docs}
@tool
def search_arxiv(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
])
return {"arvix_results": formatted_search_docs}
system_message = SystemMessage(content="""You are a helpful assistant tasked with answering questions using a set of tools.
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
FINAL ANSWER: [YOUR FINAL ANSWER].
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
Your answer should only start with "FINAL ANSWER: ", then follows with the answer. """)
toolset = [
multiply,
add,
subtract,
divide,
modulus,
search_wikipedia,
search_web,
search_arxiv,
]
# ---- Graph Construction ---- #
def create_agent_flow(provider: str = "groq"):
"""Constructs the LangGraph conversational flow with tool support."""
if provider == "google":
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
llm = ChatGroq(api_key="secret key" , model="qwen-qwq-32b", temperature=0)
elif provider == "huggingface":
llm = ChatHuggingFace(llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0
))
else:
raise ValueError("Unsupported provider. Choose from: 'google', 'groq', 'huggingface'.")
llm_toolchain = llm.bind_tools(toolset)
# Assistant node behavior
def assistant_node(state: MessagesState):
response = llm_toolchain.invoke(state["messages"])
return {"messages": [response]}
# Build the conversational graph
graph01 = StateGraph(MessagesState)
graph01.add_node("assistant", assistant_node)
graph01.add_node("tools", ToolNode(toolset))
graph01.add_edge(START, "assistant")
graph01.add_conditional_edges("assistant", tools_condition)
graph01.add_edge("tools", "assistant")
return graph01.compile()
if __name__ == "__main__":
question = "What is the capital of France?"
# Build the graph
compiled_graph = create_agent_flow(provider="groq")
# Prepare input messages
messages = [system_message, HumanMessage(content=question)]
# Run the graph
output_state = compiled_graph.invoke({"messages": messages})
# Print the final output
for m in output_state["messages"]:
print(m.content)