Spaces:
Runtime error
Runtime error
File size: 22,208 Bytes
422d8d6 84153bd 2cd9a3f 422d8d6 660c863 422d8d6 75e8671 422d8d6 157a7b8 6e19b58 157a7b8 6e19b58 422d8d6 26c83a9 df5431f 422d8d6 fd2aa28 422d8d6 bffd473 422d8d6 7d1040b a945af8 7d1040b a945af8 2bd2bb4 7fadff1 2bd2bb4 1661c3c a945af8 66d50c7 7d1040b a945af8 2b1ed6e 7d1040b 422d8d6 9d60b86 422d8d6 15319f1 422d8d6 25d5b5a bed6220 25d5b5a e0fb5c7 3a27459 e4caabe 9700103 f000ad4 422d8d6 7721b2f 422d8d6 7721b2f 422d8d6 9d60b86 5f6d56a 1ae2960 21a8d5b 708573b 422d8d6 a917498 1d35a54 721ce67 4dc908a 721ce67 4dc908a 1d35a54 721ce67 4dc908a 721ce67 1d35a54 721ce67 422d8d6 7721b2f 422d8d6 7721b2f 1d35a54 85e9aef 1d35a54 422d8d6 5efaf8a 422d8d6 9d60b86 7721b2f 1d35a54 9700103 1d35a54 422d8d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
import GPy
import GPyOpt
import pickle
import tensorflow as tf
import numpy as np
import pandas as pd
from preprocessing_utils import encode_categorical, scale_numerical, fill_nans
import os
import gradio as gr
# Load access tokens
WRITE_TOKEN = os.environ.get("WRITE_PER") # write
# Logs repo path
dataset_url = "https://huggingface.co/datasets/sandl/upload_alloy_hardness"
dataset_path = "logs_alloy_hardness.csv"
# Input parameters
model_path = "model_coatings.h5"
model = tf.keras.models.load_model(model_path)
df_columns = ['Binder', 'NMs_Type', 'Primary_Size (nm)', 'NM-Shape', 'Substrate',
'Microorganism ', 'Duration (h)', 'Washing_cycles', 'Reduction_%',
'Concetration (µg/mL)', 'NPs_Synthesis_method', 'Application method\n',
'Evalutation_Standard', 'Evalutation_Method', 'Durability test',
'Washing_Detergent', 'Washing_Temp']
targets = ["Reduction_%"]
numerical_columns = [#'Fabric diameter for antibacterial evaluation\n(cm)',
'Primary_Size (nm)', 'Duration (h)', 'Washing_cycles', 'Reduction_%',
'Concetration (µg/mL)']
categorical_columns = [column for column in df_columns if column not in numerical_columns]
numerical_columns.remove(targets[0])
for column in targets:
df_columns.remove(column)
# Unpickle files
with open("one_hot_scaler.pickle", "rb") as file:
unpickler = pickle.Unpickler(file)
one_hot_scaler = unpickler.load()
with open("minmax_scaler_targets.pickle", "rb") as file:
unpickler = pickle.Unpickler(file)
minmax_scaler_targets = unpickler.load()
with open("minmax_scaler_inputs.pickle", "rb") as file:
unpickler = pickle.Unpickler(file)
minmax_scaler_inputs = unpickler.load()
with open("one_hot_scaler.pickle", "rb") as file:
unpickler = pickle.Unpickler(file)
one_hot_scaler = unpickler.load()
test_data_columns = ['Binder_ADA',
'Binder_Alginates',
'Binder_Anatase',
'Binder_Butane tetracarboxylic',
'Binder_CDA',
'Binder_CF4 plasma',
'Binder_CTAB',
'Binder_Carboxylic acid ',
'Binder_Carboxymethyl chitosan (CMCTS)',
'Binder_Cellulase',
'Binder_Chitosan',
'Binder_Citric acid ',
'Binder_Copper phosphide',
'Binder_Date seed extract',
'Binder_Dendrimer',
'Binder_HSDA',
'Binder_HY',
'Binder_Mesosilver',
'Binder_Multi-amino compound (RSD-NH2)',
'Binder_NIDA',
'Binder_Nano-clay',
'Binder_Organosilicon',
'Binder_PEG',
'Binder_PS-b-PAA',
'Binder_PUBK (hydrophilic aliphatic polyester-urethanes)',
'Binder_Poly(quaternary ammonium salt-epoxy)',
'Binder_Printofix® Binder MTB EG liquid',
'Binder_Rutile',
'Binder_SDS',
'Binder_Seaweed',
'Binder_Silane ',
'Binder_Silica',
'Binder_Silpure',
'Binder_Sodium citrate',
'Binder_Starch',
'Binder_TX-100',
'Binder_Thioglycolic acid (TGA)',
'Binder_hexadecyltrimethoxysilane(HDTMS)',
'Binder_hexamethyltriethylenetetramine',
'Binder_poly-hydroxy-amino methyl silicone',
'Binder_polyamide network polymer (PNP)',
'NMs_Type_Ag',
'NMs_Type_Au',
'NMs_Type_CS',
'NMs_Type_Ce',
'NMs_Type_Ce_ZnO',
'NMs_Type_Co',
'NMs_Type_CuO',
'NMs_Type_CuO_TiO2',
'NMs_Type_Fe3O4',
'NMs_Type_Fe3O4_ZnO',
'NMs_Type_Mn',
'NMs_Type_SA_TSA',
'NMs_Type_SiO2_Ag_Cu',
'NMs_Type_TiO2',
'NMs_Type_ZnO',
'NMs_Type_ZnO_Cs',
'NMs_Type_ZrO2',
'NM-Shape_Crystalline',
'NM-Shape_Disc',
'NM-Shape_Ellipsoidal',
'NM-Shape_Hexagonal',
'NM-Shape_Hierarchical',
'NM-Shape_Irregular',
'NM-Shape_Nanotube',
'NM-Shape_Nanowire',
'NM-Shape_Polygonal',
'NM-Shape_Prism',
'NM-Shape_Rod ',
'NM-Shape_Spherical',
'NM-Shape_rectangle',
'Substrate_Bamboo',
'Substrate_Cotton',
'Substrate_Cotton_Polyester',
'Substrate_Denim',
'Substrate_PET',
'Substrate_Polyamide',
'Substrate_Polyester',
'Substrate_Silk',
'Substrate_Viscose',
'Substrate_Wool',
'Substrate_Wool_Polyester',
'Substrate_cotton',
'Microorganism _Aci_baumannii',
'Microorganism _Alt_brassicicola',
'Microorganism _Asp_niger',
'Microorganism _Bac_subtilis',
'Microorganism _C_albicans',
'Microorganism _E_coli',
'Microorganism _Enter_faecalis',
'Microorganism _Fus_oxysporum',
'Microorganism _K_aerogens',
'Microorganism _Kle_pneumoniae',
'Microorganism _MRSA',
'Microorganism _Mi_canis',
'Microorganism _Pse_aeruginosa',
'Microorganism _S_aureus',
'Microorganism _S_epidermis',
'Microorganism _S_pyogenes',
'Microorganism _Sal_typhimurium',
'Microorganism _Tric_mentagraphytes',
'NPs_Synthesis_method_Bio synthesis',
'NPs_Synthesis_method_Biosythesis ',
'NPs_Synthesis_method_Degradation',
'NPs_Synthesis_method_Dip_coated_Temp curated_Ultrasound',
'NPs_Synthesis_method_Not_applicable',
'NPs_Synthesis_method_Photochemical Reduction',
'NPs_Synthesis_method_Supplied',
'NPs_Synthesis_method_Wet chemical reduced',
'NPs_Synthesis_method_Wet chemistry',
'NPs_Synthesis_method_biosynthesis-green',
'NPs_Synthesis_method_ex situ synthesis',
'NPs_Synthesis_method_fungal process (biosynthesis)_green synthesis',
'NPs_Synthesis_method_green synthesis',
'NPs_Synthesis_method_in situ',
'NPs_Synthesis_method_in situ synthesis',
'NPs_Synthesis_method_in situ biosythesis',
'NPs_Synthesis_method_in situ desposition (alkalization and deposition)',
'NPs_Synthesis_method_in situ microwave irradiation',
'NPs_Synthesis_method_in situ reduction',
'NPs_Synthesis_method_in situ sol gel immersion',
'NPs_Synthesis_method_in situ sol–gel method',
'NPs_Synthesis_method_in situ synthesis',
'NPs_Synthesis_method_in situ synthesized',
'NPs_Synthesis_method_in situ ultrasound irradiation',
'NPs_Synthesis_method_ionic gelation',
'NPs_Synthesis_method_nebulize',
'NPs_Synthesis_method_reducing',
'NPs_Synthesis_method_reduction in situ',
'NPs_Synthesis_method_reduction of celluloce in viscose',
'NPs_Synthesis_method_reverse micellar cores',
'NPs_Synthesis_method_sol gel',
'NPs_Synthesis_method_sol-gel',
'NPs_Synthesis_method_sonication',
'NPs_Synthesis_method_sonochemical',
'NPs_Synthesis_method_ultrasound irradiation',
'NPs_Synthesis_method_wet chemical method',
'NPs_Synthesis_method_wet chemistry',
'Application method\n_ exhaustion and Pad_squeeze_dry',
'Application method\n_Dip coating',
'Application method\n_Dip coating and shaking',
'Application method\n_Dip padding and microwave irradiation',
'Application method\n_Dip-coating and Ultrasound irradiation',
'Application method\n_Dip_coating',
'Application method\n_Exhaust dyeing',
'Application method\n_Grafting Wet chemical ',
'Application method\n_Immersion',
'Application method\n_In situ Immersion',
'Application method\n_In situ dip-coating',
'Application method\n_Mist',
'Application method\n_Pad-Dry-Cure ',
'Application method\n_Pad-Dry-Cure and Dip coating',
'Application method\n_Pad-dry-cure',
'Application method\n_Padding',
'Application method\n_Pre-alkalization/sorption',
'Application method\n_Sonochemical',
'Application method\n_Sonochemical throwingstones',
'Application method\n_Sonochemical/Roll to roll ',
'Application method\n_Sonochemical/Ultrasonic irradiation',
'Application method\n_Sonochemical/ultrasonic transducer',
'Application method\n_Sorption',
'Application method\n_Top-coating with Pericoat',
'Application method\n_Ultrasonic irradiation',
'Application method\n_Ultrasonic-mediated dip coating',
'Application method\n_Ultrasound irradiation',
'Application method\n_Wet-on-wet padding',
'Application method\n_Wetting-Immersion',
'Application method\n_Wetting-Immersion or spraying',
'Application method\n_Wetting-Spraying',
'Application method\n_direct multi-layer coating with a socalled\nair blade',
'Application method\n_pad-dry-cure',
'Application method\n_plasma jet',
'Application method\n_ultrasonic ',
'Evalutation_Standard_AATCC_100',
'Evalutation_Standard_AATCC_147',
'Evalutation_Standard_AATCC_147_ISO_20645',
'Evalutation_Standard_AATCC_30',
'Evalutation_Standard_ASTME_2149',
'Evalutation_Standard_ASTM_2180',
'Evalutation_Standard_GB_T_20944_AATCC_61',
'Evalutation_Standard_ISO_20645',
'Evalutation_Standard_ISO_20743',
'Evalutation_Method_Agar_diffusion',
'Evalutation_Method_Dyn_shake',
'Durability test_ Memeret shaker',
'Durability test_AATCC 124',
'Durability test_AATCC 61',
'Durability test_AATCC standard wash machine',
'Durability test_Boiled',
'Durability test_GB/T 20944.3-2008(China)',
'Durability test_Hand washes',
'Durability test_Home laundering machine',
'Durability test_Home laundry washing',
'Durability test_Home/commercial laundering',
'Durability test_IS 687:1979',
'Durability test_ISO 105 CO3-1982',
'Durability test_ISO 105-C014:1989',
'Durability test_ISO 105-C06: 2010',
'Durability test_ISO 105-C06:1994',
'Durability test_ISO 105-C10:2006',
'Durability test_ISO 105-CO6-1M',
'Durability test_ISO 105-CO6-1M ',
'Durability test_ISO 6330 : 2000',
'Durability test_Industrial washing machine ISO standards',
'Durability test_Not_applicable',
'Durability test_Ordinary washing machine',
'Durability test_PNEN ISO 6330:2002/A1:2011',
'Durability test_Repeated washing',
'Durability test_UV transmission',
'Durability test_Ultrasonic cleaner',
'Durability test_Ultrasound bath',
'Durability test_Washed in a bath',
'Durability test_Washed in bath',
'Durability test_laundering cycles',
'Durability test_laundry cycle',
'Durability test_laundry regimes used in hospitals',
'Durability test_vigorous magnetic stirring',
'Washing_Detergent_AATCC Standard Detergent WOB',
'Washing_Detergent_AATCC WOB standard detergent',
'Washing_Detergent_AATCC standard detergent WOB',
'Washing_Detergent_AATCC standards specified detergent WOB',
'Washing_Detergent_Anionic detergent',
'Washing_Detergent_Commercial detergent',
'Washing_Detergent_Deionized water',
'Washing_Detergent_Distilled water',
'Washing_Detergent_IS-I neutral soap',
'Washing_Detergent_Na2CO3/commercial detergent',
'Washing_Detergent_Neutral soap solution',
'Washing_Detergent_Non-ionic detergent, Triton X-100',
'Washing_Detergent_Nonionic detergent',
'Washing_Detergent_Nonionic washing agent Felosan RG-N',
'Washing_Detergent_Not_applicable',
'Washing_Detergent_Ordinary detergent',
'Washing_Detergent_SDC standard detergent-Sodium carbonate',
'Washing_Detergent_Soap',
'Washing_Detergent_Soap detergent',
'Washing_Detergent_Sodium carbonate',
'Washing_Detergent_Sodium carbonate and soap',
'Washing_Detergent_Standard detergent',
'Washing_Detergent_Tap and deionized water',
'Washing_Detergent_Tap water',
'Washing_Detergent_Triton-X, non-ionic detergent',
'Washing_Detergent_nonionic detergent',
'Washing_Detergent_sodium dodecanesulphonate',
'Washing_Detergent_“Li Bai” washing powder',
'Washing_Temp_25',
'Washing_Temp_40',
'Washing_Temp_49',
'Washing_Temp_50',
'Washing_Temp_60',
'Washing_Temp_75',
'Washing_Temp_83',
'Washing_Temp_92',
'Washing_Temp_95',
'Washing_Temp_Not_applicable',
'Washing_Temp_Room_Temp',
'Washing_Temp_Warm water',
'Washing_Temp_machine set with warm\nwater',
'Washing_Temp_warm water',
'Primary_Size (nm)',
'Duration (h)',
'Washing_cycles',
'Concetration (µg/mL)']
def write_logs(message, message_type="Prediction"):
"""
Write logs
"""
#with Repository(local_dir="data", clone_from=dataset_url, use_auth_token=WRITE_TOKEN).commit(commit_message="from private", blocking=False):
# with open(dataset_path, "a") as csvfile:
# writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"])
# writer.writerow(
# {"name": message_type, "message": message, "time": str(datetime.now())}
# )
return
def fit_outputs_constraints(X, antimicrobial_activity_target, request: gr.Request):
reduction_target = 100 - int(antimicrobial_activity_target)
reduction_target_df = pd.DataFrame({'Reduction_%':[reduction_target]})
reduction_target_df = scale_numerical(reduction_target_df, ['Reduction_%'], scaler=minmax_scaler_targets, fit=False)
predictions = model.predict(X)[0]
error = np.sqrt(np.square(predictions[0]-reduction_target_df))
return error
def predict_inverse(antimicrobial_activity_target, substrate, microorganism, num_washing_cycles, request: gr.Request):
### Define space and constrains
dimensionality_dict = {}
one_hot_mapping = {}
for c in categorical_columns:
dimensionality_dict[c] = 0
one_hot_mapping[c] = []
for c in categorical_columns:
for t in test_data_columns:
if c in t:
dimensionality_dict[c]+=1
one_hot_mapping[c].append(t)
domain = []
constrained_columns = ['Substrate', 'Washing_cycles', 'Microorganism ']
### Add input domain
for df_column in df_columns:
if df_column == "Substrate":
for one_hot_column in one_hot_mapping[df_column]:
if one_hot_column == substrate:
domain.append({'name': str(one_hot_column), 'type': 'categorical', 'domain': (1.0, 1.0)})
else:
domain.append({'name': str(one_hot_column), 'type': 'categorical', 'domain': (0.0, 0.0)})
elif df_column == 'Microorganism ':
for one_hot_column in one_hot_mapping[df_column]:
if one_hot_column == microorganism:
domain.append({'name': str(one_hot_column), 'type': 'categorical', 'domain': (1.0, 1.0)})
else:
domain.append({'name': str(one_hot_column), 'type': 'categorical', 'domain': (0.0, 0.0)})
elif df_column == 'Washing_cycles':
washing_cycles_target_df = pd.DataFrame([[0]*len(numerical_columns)], columns=numerical_columns)
washing_cycles_target_df['Washing_cycles'].iloc[0] = int(num_washing_cycles)
washing_cycles_target_df = scale_numerical(washing_cycles_target_df, numerical_columns, scaler=minmax_scaler_inputs, fit=False)
domain.append({'name': str(df_column), 'type': 'continuous', 'domain': (washing_cycles_target_df["Washing_cycles"].iloc[0],
washing_cycles_target_df["Washing_cycles"].iloc[0])})
elif df_column in numerical_columns:
domain.append({'name': str(df_column), 'type': 'continuous', 'domain': (0.0,1.)})
else:
domain.append({'name': str(df_column), 'type': 'categorical', 'domain': (0,1),
'dimensionality': dimensionality_dict[df_column]})
print("Domain is ", domain)
print(len(domain))
# Constraints
constraints = []
def fit_outputs(x):
return fit_outputs_constraints(x, antimicrobial_activity_target, request)
opt = GPyOpt.methods.BayesianOptimization(f = fit_outputs, # function to optimize
domain = domain, # box-constraints of the problem
constraints = constraints,
acquisition_type ='LCB', # LCB acquisition
acquisition_weight = 0.1) # Exploration exploitation
# it may take a few seconds
opt.run_optimization(max_iter=10)
opt.plot_convergence()
opt = GPyOpt.methods.BayesianOptimization(f = fit_outputs, # function to optimize
domain = domain, # box-constraints of the problem
constraints = constraints,
acquisition_type ='LCB', # LCB acquisition
acquisition_weight = 0.1) # Exploration exploitation
x_best = opt.X[np.argmin(opt.Y)]
best_params = dict(zip(
[el['name'] for el in domain],
[[x] for x in x_best]))
optimized_x = pd.DataFrame.from_dict(best_params)
optimized_x[numerical_columns] = minmax_scaler_inputs.inverse_transform(optimized_x[numerical_columns])
for column in optimized_x.columns:
if column in one_hot_mapping:
optimized_x.loc[0, column] = one_hot_mapping[column][int(optimized_x.loc[0, column])]
optimal_concentration = optimized_x['Concetration (µg/mL)'].iloc[0] if optimized_x['Concetration (µg/mL)'].iloc[0] > 0 else 11.2
return (optimized_x['Binder'].iloc[0], optimized_x['NMs_Type'].iloc[0], np.round(optimized_x['Primary_Size (nm)'].iloc[0], 1),
optimized_x['NM-Shape'].iloc[0], np.round(optimized_x['Concetration (µg/mL)'].iloc[0], 1) if optimized_x['Concetration (µg/mL)'].iloc[0] else 0.1,
optimized_x['NPs_Synthesis_method'].iloc[0], optimized_x['Application method\n'].iloc[0],
optimized_x['Washing_Detergent'].iloc[0], optimized_x['Washing_Temp'].iloc[0])
example_inputs = [80, "Substrate_Bamboo", "Microorganism _Alt_brassicicola", 50]
css_styling = """#submit {background: #1eccd8}
#submit:hover {background: #a2f1f6}
.output-image, .input-image, .image-preview {height: 250px !important}
.output-plot {height: 250px !important}"""
light_theme_colors = gr.themes.Color(c50="#e4f3fa", # Dataframe background cell content - light mode only
c100="#e4f3fa", # Top corner of clear button in light mode + markdown text in dark mode
c200="#a1c6db", # Component borders
c300="#FFFFFF", #
c400="#e4f3fa", # Footer text
c500="#0c1538", # Text of component headers in light mode only
c600="#a1c6db", # Top corner of button in dark mode
c700="#475383", # Button text in light mode + component borders in dark mode
c800="#0c1538", # Markdown text in light mode
c900="#a1c6db", # Background of dataframe - dark mode
c950="#0c1538") # Background in dark mode only
# secondary color used for highlight box content when typing in light mode, and download option in dark mode
# primary color used for login button in dark mode
osium_theme = gr.themes.Default(primary_hue="cyan", secondary_hue="cyan", neutral_hue=light_theme_colors)
page_title = "Recommendation of optimal parameters to fulfill coating antimicrobial activity requirement and constraints"
favicon_path = "osiumai_favicon.ico"
logo_path = "osiumai_logo.jpg"
html = f"""<html> <link rel="icon" type="image/x-icon" href="file={favicon_path}">
<img src='file={logo_path}' alt='Osium AI logo' width='200' height='100'> </html>"""
with gr.Blocks(css=css_styling, title=page_title, theme=osium_theme) as demo:
#gr.HTML(html)
gr.Markdown("# <p style='text-align: center;'>Get optimal textile coating recommendation to fufill your target antimicrobial activity requirement</p>")
gr.Markdown("Recommendation of optimal parameters to fulfill textile coating antimicrobial activity requirement")
with gr.Row():
clear_button = gr.Button("Clear")
prediction_button = gr.Button("Predict", elem_id="submit")
with gr.Row():
with gr.Column():
gr.Markdown("### The target antimicrobial activity of your textile coating")
antimicrobial_activity_target = gr.Number(label="Enter the minimum acceptable antimicrobial activity for your textile coating")
gr.Markdown("### Your constraints")
substrate = gr.Dropdown(label="Your substrate", choices=[c for c in test_data_columns if c.startswith("Substrate")])
microorganism = gr.Dropdown(label="Microorganism", choices=[c for c in test_data_columns if c.startswith("Microorganism")])
num_washing_cycles = gr.Number(label="Your number of washing cycles")
with gr.Column():
with gr.Row():
with gr.Column():
# gr.Markdown("### Optimal conditions")
gr.Markdown("### Optimal nanomaterial characteristics")
optimal_binder = gr.Textbox(label="Optimal binder")
optimal_nms_type = gr.Textbox(label="Optimal nanomaterial type")
optimal_primary_size = gr.Textbox(label="Optimal primary size (nm)")
optimal_nm_shape = gr.Textbox(label="Optimal nanomaterial shape")
gr.Markdown("### Optimal nanomaterial application")
optimal_concentration = gr.Textbox(label="Optimal concentration (µg/mL)")
optimal_nps_synthesis = gr.Textbox(label="Optimal nanomaterial synthesis method")
optimal_application_method = gr.Textbox(label="Optimal application method")
gr.Markdown("### Optimal washing conditions")
optimal_washing_detergent = gr.Textbox(label="Optimal washing detergent")
optimal_washing_temperature = gr.Textbox(label="Optimal washing temperature")
with gr.Row():
gr.Examples([example_inputs], [antimicrobial_activity_target, substrate, microorganism, num_washing_cycles])
prediction_button.click(
fn=predict_inverse,
inputs=[antimicrobial_activity_target, substrate, microorganism, num_washing_cycles],
outputs=[optimal_binder, optimal_nms_type, optimal_primary_size, optimal_nm_shape,
optimal_concentration, optimal_nps_synthesis, optimal_application_method,
optimal_washing_detergent, optimal_washing_temperature],
show_progress=True,
)
clear_button.click(
lambda x: [gr.update(value=None)] * 14,
[],
[
antimicrobial_activity_target,
substrate, microorganism, num_washing_cycles,
optimal_binder, optimal_nms_type, optimal_primary_size, optimal_nm_shape,
optimal_concentration, optimal_nps_synthesis, optimal_application_method,
optimal_washing_detergent, optimal_washing_temperature,
],
)
if __name__ == "__main__":
demo.queue(concurrency_count=2)
demo.launch() |