Spaces:
Sleeping
Sleeping
# AI Embedded Knowledge Agent - Architecture Document | |
## 1. System Overview | |
The AI Embedded Knowledge Agent is a versatile knowledge management system designed to ingest, process, and retrieve information from various document types and web sources. Built for a hackathon and deployable on Hugging Face, this system enables users to upload documents or provide URLs, which are then processed, embedded, and stored for intelligent retrieval. | |
```mermaid | |
graph TD | |
A[User Interface - Gradio] --> B[Document Processor] | |
A --> C[URL Processor] | |
B --> D[Text Extractor] | |
C --> D | |
D --> E[Embedding Generator - Gemini] | |
E --> F[Vector Database - Pinecone] | |
A --> G[Query Processor] | |
G --> E | |
G --> F | |
G --> H[Response Generator - LangChain RAG] | |
H --> A | |
``` | |
## 2. Core Components | |
### 2.1 Document Ingestion System | |
This component handles the intake of various document formats and web content. | |
#### Document Processor | |
- **Responsibility**: Process uploaded documents (PDF, DOCX, CSV, PPTX, Excel) | |
- **Technologies**: PyMuPDF, python-docx, pandas, python-pptx, pdfplumber | |
- **Input**: Raw document files | |
- **Output**: Extracted text content | |
#### URL Processor | |
- **Responsibility**: Crawl and extract content from provided URLs, including nested documents and links | |
- **Technologies**: BeautifulSoup, requests, trafilatura | |
- **Input**: URLs | |
- **Output**: Extracted text content from web pages and linked documents | |
### 2.2 Knowledge Processing System | |
This component transforms raw text into queryable knowledge. | |
#### Text Extractor | |
- **Responsibility**: Clean, normalize, and chunk text from various sources | |
- **Technologies**: NLTK, spaCy, regex | |
- **Input**: Raw text from documents and web pages | |
- **Output**: Cleaned, normalized text chunks ready for embedding | |
#### Embedding Generator | |
- **Responsibility**: Generate vector embeddings for text chunks | |
- **Technology**: Gemini Embedding v3 (gemini-embedding-exp-03-07) | |
- **Input**: Processed text chunks | |
- **Output**: Vector embeddings | |
### 2.3 Knowledge Storage System | |
This component manages the storage and retrieval of vector embeddings. | |
#### Vector Database | |
- **Responsibility**: Store and index vector embeddings for efficient retrieval | |
- **Technology**: Pinecone | |
- **Input**: Vector embeddings with metadata | |
- **Output**: Retrieved relevant vectors based on similarity | |
### 2.4 Query Processing System | |
This component handles user queries and generates responses. | |
#### Query Processor | |
- **Responsibility**: Process user queries and convert them to vector embeddings | |
- **Technologies**: Gemini Embedding v3, LangChain | |
- **Input**: User queries | |
- **Output**: Query vector embeddings | |
#### Response Generator | |
- **Responsibility**: Generate coherent responses based on retrieved knowledge | |
- **Technology**: LangChain RAG (Retrieval Augmented Generation) | |
- **Input**: Retrieved relevant text chunks | |
- **Output**: Natural language responses | |
### 2.5 User Interface System | |
This component provides the user-facing interface. | |
#### Gradio UI | |
- **Responsibility**: Provide intuitive interface for document upload, URL input, and querying | |
- **Technology**: Gradio | |
- **Features**: | |
- Document upload area | |
- URL input field | |
- Query input and response display | |
- System status indicators | |
## 3. Data Flow | |
```mermaid | |
sequenceDiagram | |
participant User | |
participant UI as Gradio UI | |
participant DP as Document Processor | |
participant UP as URL Processor | |
participant TE as Text Extractor | |
participant EG as Embedding Generator | |
participant VDB as Vector Database | |
participant QP as Query Processor | |
participant RG as Response Generator | |
%% Document Upload Flow | |
User->>UI: Upload Document | |
UI->>DP: Process Document | |
DP->>TE: Extract Text | |
TE->>EG: Generate Embeddings | |
EG->>VDB: Store Embeddings | |
%% URL Processing Flow | |
User->>UI: Input URL | |
UI->>UP: Process URL | |
UP->>TE: Extract Text | |
TE->>EG: Generate Embeddings | |
EG->>VDB: Store Embeddings | |
%% Query Flow | |
User->>UI: Submit Query | |
UI->>QP: Process Query | |
QP->>EG: Generate Query Embedding | |
QP->>VDB: Retrieve Relevant Embeddings | |
VDB->>QP: Return Relevant Chunks | |
QP->>RG: Generate Response | |
RG->>UI: Display Response | |
UI->>User: Show Answer | |
``` | |
## 4. Technical Architecture | |
### 4.1 Technology Stack | |
| Component | Technology | Purpose | | |
| ------------------ | ----------------------------------------------------- | ------------------------------------------ | | |
| Document Parsing | PyMuPDF, python-docx, pandas, python-pptx, pdfplumber | Extract text from various document formats | | |
| Web Scraping | BeautifulSoup, requests, trafilatura | Extract content from web pages | | |
| Text Processing | NLTK, spaCy, regex | Clean and chunk text | | |
| Embedding | Gemini Embedding v3 (gemini-embedding-exp-03-07) | Generate vector embeddings | | |
| Vector Storage | Pinecone | Store and retrieve vector embeddings | | |
| RAG Implementation | LangChain | Implement retrieval augmented generation | | |
| User Interface | Gradio | Provide user-friendly interface | | |
### 4.2 Integration Points | |
- **Document Processing β Text Extraction**: Raw text extraction from documents | |
- **URL Processing β Text Extraction**: Raw text extraction from web pages | |
- **Text Extraction β Embedding Generation**: Processed text chunks for embedding | |
- **Embedding Generation β Vector Database**: Storage of embeddings | |
- **Query Processing β Embedding Generation**: Query embedding generation | |
- **Query Processing β Vector Database**: Retrieval of relevant embeddings | |
- **Query Processing β Response Generation**: Generation of coherent responses | |
- **Response Generation β UI**: Display of responses to user | |
## 5. Deployment Architecture | |
The system is designed to be deployed on Hugging Face using their Spaces feature, which supports Gradio applications. | |
```mermaid | |
graph TD | |
A[User] --> B[Hugging Face Space] | |
B --> C[Gradio Application] | |
C --> D[Document Processing] | |
C --> E[URL Processing] | |
C --> F[Query Processing] | |
D --> G[Gemini API] | |
E --> G | |
F --> G | |
D --> H[Pinecone API] | |
E --> H | |
F --> H | |
``` | |
### 5.1 Deployment Considerations | |
- **API Keys**: Secure storage of Gemini and Pinecone API keys | |
- **Rate Limiting**: Handling API rate limits for both Gemini and Pinecone | |
- **Memory Management**: Efficient memory usage within Hugging Face constraints | |
- **Statelessness**: Designing components to be stateless where possible | |
- **Error Handling**: Robust error handling for API failures and timeouts | |
## 6. Scalability and Performance | |
For the hackathon version, the focus is on functionality rather than scalability. However, the architecture is designed with the following considerations: | |
- **Document Size Limits**: Implement reasonable limits on document sizes | |
- **Chunking Strategy**: Optimize text chunking for better retrieval performance | |
- **Caching**: Implement basic caching for frequently accessed embeddings | |
- **Asynchronous Processing**: Use asynchronous processing where appropriate | |
## 7. Future Enhancements | |
While not implemented in the hackathon version, the architecture supports future enhancements: | |
- **Authentication**: User authentication and document access control | |
- **Document Versioning**: Track changes to documents over time | |
- **Advanced RAG Techniques**: Implement more sophisticated RAG approaches | |
- **Multi-Modal Support**: Add support for images and other non-text content | |
- **Collaborative Features**: Allow multiple users to collaborate on knowledge bases | |
- **Custom Training**: Fine-tune models for specific domains | |
## 8. Folder Structure | |
``` | |
rag-ai/ | |
βββ src/ | |
β βββ ingestion/ | |
β β βββ document_processor.py | |
β β βββ url_processor.py | |
β β βββ text_extractor.py | |
β βββ embedding/ | |
β β βββ embedding_generator.py | |
β βββ storage/ | |
β β βββ vector_db.py | |
β βββ rag/ | |
β β βββ query_processor.py | |
β β βββ response_generator.py | |
β βββ ui/ | |
β β βββ gradio_app.py | |
β βββ utils/ | |
β βββ config_manager.py | |
β βββ error_handler.py | |
βββ config/ | |
β βββ config.yaml | |
βββ docs/ | |
β βββ architecture.md | |
β βββ api_documentation.md | |
βββ tests/ | |
β βββ test_document_processor.py | |
β βββ test_url_processor.py | |
β βββ ... | |
βββ scripts/ | |
β βββ setup.py | |
β βββ deploy_to_huggingface.py | |
βββ data/ | |
β βββ sample_documents/ | |
β βββ test_data/ | |
βββ .gitignore | |
βββ requirements.txt | |
βββ README.md | |
βββ app.py | |
``` | |
## 9. Implementation Roadmap | |
1. **Phase 1: Core Infrastructure** | |
- Set up project structure | |
- Implement basic document processing | |
- Set up Pinecone integration | |
2. **Phase 2: Knowledge Processing** | |
- Implement text extraction and chunking | |
- Integrate Gemini embedding API | |
- Develop vector storage and retrieval | |
3. **Phase 3: Query System** | |
- Implement query processing | |
- Develop RAG response generation | |
- Integrate components | |
4. **Phase 4: User Interface** | |
- Develop Gradio UI | |
- Integrate UI with backend components | |
- Add error handling and user feedback | |
5. **Phase 5: URL Processing** | |
- Implement URL crawling | |
- Add nested document extraction | |
- Integrate with existing components | |
6. **Phase 6: Testing and Deployment** | |
- Comprehensive testing | |
- Optimization for Hugging Face deployment | |
- Documentation and demo preparation | |