Spaces:
Sleeping
Sleeping
File size: 14,578 Bytes
df44cb1 57e238b 7a3ea68 df44cb1 7a3ea68 df44cb1 c1d2f7d df44cb1 77c2d4d 4d0bb63 77c2d4d a62b699 7b80d55 df44cb1 57e238b 7a3ea68 df44cb1 57e238b df44cb1 7a3ea68 57e238b df44cb1 57e238b df44cb1 7a3ea68 df44cb1 7a3ea68 57e238b 7a3ea68 57e238b 7a3ea68 57e238b 7a3ea68 57e238b 7a3ea68 57e238b df44cb1 7a3ea68 df44cb1 57e238b df44cb1 57e238b df44cb1 57e238b df44cb1 7a3ea68 df44cb1 7a3ea68 df44cb1 7a3ea68 df44cb1 57e238b df44cb1 57e238b 7a3ea68 df44cb1 7a3ea68 df44cb1 7a3ea68 df44cb1 7a3ea68 df44cb1 7a3ea68 df44cb1 57e238b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import gradio as gr
import whisperx
import torch
import librosa
import logging
import os
import time
import numpy as np
import requests
import random
import string
import json
import pathlib
import tempfile
# -------------------------------
# Vocal Extraction Function
# -------------------------------
def get_vocals(input_file):
try:
session_hash = ''.join(random.choice(string.ascii_lowercase + string.digits) for _ in range(11))
file_id = ''.join(random.choice(string.ascii_lowercase + string.digits) for _ in range(11))
file_len = 0
file_content = pathlib.Path(input_file).read_bytes()
file_len = len(file_content)
r = requests.post(
f'https://politrees-audio-separator-uvr.hf.space/gradio_api/upload?upload_id={file_id}',
files={'files': open(input_file, 'rb')}
)
json_data = r.json()
headers = {
'accept': '*/*',
'accept-language': 'en-US,en;q=0.5',
'content-type': 'application/json',
'origin': 'https://politrees-audio-separator-uvr.hf.space',
'priority': 'u=1, i',
'referer': 'https://politrees-audio-separator-uvr.hf.space/?__theme=system',
'sec-ch-ua': '"Not(A:Brand";v="99", "Brave";v="133", "Chromium";v="133"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Windows"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-origin',
'sec-fetch-storage-access': 'none',
'sec-gpc': '1',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/133.0.0.0 Safari/537.36',
}
params = {
'__theme': 'system',
}
json_payload = {
'data': [
{
'path': json_data[0],
'url': 'https://politrees-audio-separator-uvr.hf.space/gradio_api/file='+json_data[0],
'orig_name': pathlib.Path(input_file).name,
'size': file_len,
'mime_type': 'audio/wav',
'meta': {
'_type': 'gradio.FileData',
},
},
'MelBand Roformer | Vocals by Kimberley Jensen',
256,
False,
5,
0,
'/tmp/audio-separator-models/',
'output',
'wav',
0.9,
0,
1,
'NAME_(STEM)_MODEL',
'NAME_(STEM)_MODEL',
'NAME_(STEM)_MODEL',
'NAME_(STEM)_MODEL',
'NAME_(STEM)_MODEL',
'NAME_(STEM)_MODEL',
'NAME_(STEM)_MODEL',
],
'event_data': None,
'fn_index': 5,
'trigger_id': 28,
'session_hash': session_hash,
}
response = requests.post(
'https://politrees-audio-separator-uvr.hf.space/gradio_api/queue/join',
params=params,
headers=headers,
json=json_payload,
)
max_retries = 5
retry_delay = 5
retry_count = 0
while retry_count < max_retries:
try:
print(f"Connecting to stream... Attempt {retry_count + 1}")
r = requests.get(
f'https://politrees-audio-separator-uvr.hf.space/gradio_api/queue/data?session_hash={session_hash}',
stream=True
)
if r.status_code != 200:
raise Exception(f"Failed to connect: HTTP {r.status_code}")
print("Connected successfully.")
for line in r.iter_lines():
if line:
json_resp = json.loads(line.decode('utf-8').replace('data: ', ''))
print(json_resp)
if 'process_completed' in json_resp['msg']:
print("Process completed.")
output_url = json_resp['output']['data'][1]['url']
print(f"Output URL: {output_url}")
return output_url
print("Stream ended prematurely. Reconnecting...")
except Exception as e:
print(f"Error occurred: {e}. Retrying...")
retry_count += 1
time.sleep(retry_delay)
print("Max retries reached. Exiting.")
return None
except Exception as ex:
print(f"Unexpected error in get_vocals: {ex}")
return None
# -------------------------------
# Normalization Function
# -------------------------------
def normalize_audio(audio, threshold_ratio=0.6):
"""
Given an audio signal (numpy array), set to 0 any samples that are below
a given ratio of the maximum absolute amplitude. This is a simple way to
suppress relatively quieter (background) parts.
"""
max_val = np.max(np.abs(audio))
threshold = threshold_ratio * max_val
normalized_audio = np.where(np.abs(audio) >= threshold, audio, 0)
return normalized_audio
# -------------------------------
# Logging and Model Setup
# -------------------------------
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("whisperx_app")
device = "cpu"
compute_type = "int8"
torch.set_num_threads(os.cpu_count())
models = {
"tiny": whisperx.load_model("tiny", device, compute_type=compute_type, vad_method='silero'),
"base": whisperx.load_model("base", device, compute_type=compute_type, vad_method='silero'),
"small": whisperx.load_model("small", device, compute_type=compute_type, vad_method='silero'),
"large": whisperx.load_model("large", device, compute_type=compute_type, vad_method='silero'),
"large-v2": whisperx.load_model("large-v2", device, compute_type=compute_type, vad_method='silero'),
"large-v3": whisperx.load_model("large-v3", device, compute_type=compute_type, vad_method='silero'),
}
def split_audio_by_pause(audio, sr, pause_threshold, top_db=30):
"""
Splits the audio into segments using librosa's non-silent detection.
Adjacent non-silent intervals are merged if the gap between them is less than the pause_threshold.
Returns a list of (start_sample, end_sample) tuples.
"""
intervals = librosa.effects.split(audio, top_db=top_db)
if intervals.size == 0:
return [(0, len(audio))]
merged_intervals = []
current_start, current_end = intervals[0]
for start, end in intervals[1:]:
gap_duration = (start - current_end) / sr
if gap_duration < pause_threshold:
current_end = end
else:
merged_intervals.append((current_start, current_end))
current_start, current_end = start, end
merged_intervals.append((current_start, current_end))
return merged_intervals
# -------------------------------
# Main Transcription Function
# -------------------------------
def transcribe(audio_file, model_size="base", debug=False, pause_threshold=0.0, vocal_extraction=False, language="en"):
start_time = time.time()
final_result = ""
debug_log = []
try:
# If vocal extraction is enabled, process the file first
if vocal_extraction:
debug_log.append("Vocal extraction enabled; processing input file for vocals...")
extracted_url = get_vocals(audio_file)
if extracted_url is not None:
debug_log.append("Vocal extraction succeeded; downloading extracted audio...")
response = requests.get(extracted_url)
if response.status_code == 200:
# Write to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
tmp.write(response.content)
audio_file = tmp.name
debug_log.append("Extracted audio downloaded and saved for transcription.")
else:
debug_log.append("Failed to download extracted audio; proceeding with original file.")
else:
debug_log.append("Vocal extraction failed; proceeding with original audio.")
# Load audio file at 16kHz
audio, sr = librosa.load(audio_file, sr=16000)
debug_log.append(f"Audio loaded: {len(audio)/sr:.2f} seconds long at {sr} Hz")
# If we used vocal extraction, apply normalization to remove low-amplitude (background) parts
if vocal_extraction:
audio = normalize_audio(audio)
debug_log.append("Normalization applied to extracted audio to remove low-amplitude segments.")
# Select the model and set batch size
model = models[model_size]
batch_size = 8 if model_size == "tiny" else 4
# Use the provided language if set; otherwise, let the model detect the language.
if language:
transcript = model.transcribe(audio, batch_size=batch_size, language=language)
else:
transcript = model.transcribe(audio, batch_size=batch_size)
language = transcript.get("language", "unknown")
# Load alignment model using the specified/overridden language
model_a, metadata = whisperx.load_align_model(language_code=language, device=device)
# If pause_threshold > 0, split the audio and process segments individually
if pause_threshold > 0:
segments = split_audio_by_pause(audio, sr, pause_threshold)
debug_log.append(f"Audio split into {len(segments)} segment(s) using a pause threshold of {pause_threshold}s")
for seg_idx, (seg_start, seg_end) in enumerate(segments):
audio_segment = audio[seg_start:seg_end]
seg_duration = (seg_end - seg_start) / sr
debug_log.append(f"Segment {seg_idx+1}: start={seg_start/sr:.2f}s, duration={seg_duration:.2f}s")
seg_transcript = model.transcribe(audio_segment, batch_size=batch_size, language=language)
seg_aligned = whisperx.align(
seg_transcript["segments"], model_a, metadata, audio_segment, device
)
for segment in seg_aligned["segments"]:
for word in segment["words"]:
adjusted_start = word['start'] + seg_start/sr
adjusted_end = word['end'] + seg_start/sr
final_result += f"[{adjusted_start:5.2f}s-{adjusted_end:5.2f}s] {word['word']}\n"
else:
# Process the entire audio without splitting
transcript = model.transcribe(audio, batch_size=batch_size, language=language)
aligned = whisperx.align(
transcript["segments"], model_a, metadata, audio, device
)
for segment in aligned["segments"]:
for word in segment["words"]:
final_result += f"[{word['start']:5.2f}s-{word['end']:5.2f}s] {word['word']}\n"
debug_log.append(f"Language used: {language}")
debug_log.append(f"Batch size: {batch_size}")
debug_log.append(f"Processed in {time.time()-start_time:.2f}s")
except Exception as e:
logger.error("Error during transcription:", exc_info=True)
final_result = "Error occurred during transcription"
debug_log.append(f"ERROR: {str(e)}")
if debug:
return final_result, "\n".join(debug_log)
return final_result
# -------------------------------
# Gradio Interface
# -------------------------------
with gr.Blocks(title="WhisperX CPU Transcription") as demo:
gr.Markdown("# WhisperX CPU Transcription with Vocal Extraction Option")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
label="Upload Audio File",
type="filepath",
sources=["upload", "microphone"],
interactive=True,
)
model_selector = gr.Dropdown(
choices=list(models.keys()),
value="base",
label="Model Size",
interactive=True,
)
pause_threshold_slider = gr.Slider(
minimum=0, maximum=5, step=0.1, value=0,
label="Pause Threshold (seconds)",
interactive=True,
info="Set a pause duration threshold. Audio pauses longer than this will be used to split the audio into segments."
)
# New input for vocal extraction feature
vocal_extraction_checkbox = gr.Checkbox(
label="Extract Vocals (improves accuracy on noisy audio)",
value=False
)
# New language selection (default English)
language_input = gr.Textbox(
label="Language Code (e.g., en, es, fr)",
placeholder="Enter language code",
value="en"
)
debug_checkbox = gr.Checkbox(label="Enable Debug Mode", value=False)
transcribe_btn = gr.Button("Transcribe", variant="primary")
with gr.Column():
output_text = gr.Textbox(
label="Transcription Output",
lines=20,
placeholder="Transcription will appear here..."
)
debug_output = gr.Textbox(
label="Debug Information",
lines=10,
placeholder="Debug logs will appear here...",
visible=False,
)
# Toggle debug visibility
def toggle_debug(debug_enabled):
return gr.update(visible=debug_enabled)
debug_checkbox.change(
toggle_debug,
inputs=[debug_checkbox],
outputs=[debug_output]
)
# Process transcription with all new parameters
transcribe_btn.click(
transcribe,
inputs=[audio_input, model_selector, debug_checkbox, pause_threshold_slider, vocal_extraction_checkbox, language_input],
outputs=[output_text, debug_output]
)
# -------------------------------
# Launch the App
# -------------------------------
if __name__ == "__main__":
demo.queue(max_size=4).launch()
|