File size: 14,744 Bytes
df44cb1
 
 
 
 
 
 
57e238b
7a3ea68
 
 
 
 
 
df44cb1
7a3ea68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed7cca2
7a3ea68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
435283b
7a3ea68
 
 
 
df44cb1
 
 
 
c1d2f7d
df44cb1
 
 
77c2d4d
 
4d0bb63
77c2d4d
a62b699
7b80d55
df44cb1
 
0b55c27
57e238b
 
 
 
 
 
 
 
 
 
 
 
435283b
 
 
 
 
 
 
 
 
 
cd84e90
 
 
 
 
 
57e238b
7a3ea68
 
 
 
df44cb1
57e238b
df44cb1
cd84e90
df44cb1
 
7a3ea68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57e238b
df44cb1
57e238b
df44cb1
7a3ea68
df44cb1
 
 
ed7cca2
7a3ea68
 
 
 
 
 
ed7cca2
7a3ea68
 
ed7cca2
57e238b
 
 
 
 
 
 
 
7a3ea68
 
 
57e238b
7a3ea68
57e238b
 
 
cd84e90
6ac1910
cd84e90
 
 
 
 
57e238b
 
7a3ea68
 
57e238b
 
7a3ea68
57e238b
cd84e90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df44cb1
7a3ea68
df44cb1
57e238b
df44cb1
 
 
57e238b
df44cb1
 
 
57e238b
5f6435d
 
df44cb1
7a3ea68
df44cb1
7a3ea68
df44cb1
7a3ea68
df44cb1
 
 
 
 
 
 
 
 
 
57e238b
df44cb1
 
 
 
57e238b
 
 
 
 
 
7a3ea68
 
 
 
 
 
 
 
 
df44cb1
 
 
 
 
 
 
7a3ea68
df44cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a3ea68
df44cb1
 
 
7a3ea68
 
 
df44cb1
57e238b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import gradio as gr
import whisperx
import torch
import librosa
import logging
import os
import time
import numpy as np
import requests
import random
import string
import json
import pathlib
import tempfile

# -------------------------------
# Vocal Extraction Function
# -------------------------------
def get_vocals(input_file):
    try:
        session_hash = ''.join(random.choice(string.ascii_lowercase + string.digits) for _ in range(11))
        file_id = ''.join(random.choice(string.ascii_lowercase + string.digits) for _ in range(11))
        file_len = 0

        file_content = pathlib.Path(input_file).read_bytes()
        file_len = len(file_content)
        r = requests.post(
            f'https://politrees-audio-separator-uvr.hf.space/gradio_api/upload?upload_id={file_id}', 
            files={'files': open(input_file, 'rb')}
        )
        json_data = r.json()

        headers = {
            'accept': '*/*',
            'accept-language': 'en-US,en;q=0.5',
            'content-type': 'application/json',
            'origin': 'https://politrees-audio-separator-uvr.hf.space',
            'priority': 'u=1, i',
            'referer': 'https://politrees-audio-separator-uvr.hf.space/?__theme=system',
            'sec-ch-ua': '"Not(A:Brand";v="99", "Brave";v="133", "Chromium";v="133"',
            'sec-ch-ua-mobile': '?0',
            'sec-ch-ua-platform': '"Windows"',
            'sec-fetch-dest': 'empty',
            'sec-fetch-mode': 'cors',
            'sec-fetch-site': 'same-origin',
            'sec-fetch-storage-access': 'none',
            'sec-gpc': '1',
            'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/133.0.0.0 Safari/537.36',
        }

        params = {
            '__theme': 'system',
        }

        json_payload = {
            'data': [
                {
                    'path': json_data[0],
                    'url': 'https://politrees-audio-separator-uvr.hf.space/gradio_api/file=' + json_data[0],
                    'orig_name': pathlib.Path(input_file).name,
                    'size': file_len,
                    'mime_type': 'audio/wav',
                    'meta': {
                        '_type': 'gradio.FileData',
                    },
                },
                'MelBand Roformer | Vocals by Kimberley Jensen',
                256,
                False,
                5,
                0,
                '/tmp/audio-separator-models/',
                'output',
                'wav',
                0.9,
                0,
                1,
                'NAME_(STEM)_MODEL',
                'NAME_(STEM)_MODEL',
                'NAME_(STEM)_MODEL',
                'NAME_(STEM)_MODEL',
                'NAME_(STEM)_MODEL',
                'NAME_(STEM)_MODEL',
                'NAME_(STEM)_MODEL',
            ],
            'event_data': None,
            'fn_index': 5,
            'trigger_id': 28,
            'session_hash': session_hash,
        }

        response = requests.post(
            'https://politrees-audio-separator-uvr.hf.space/gradio_api/queue/join',
            params=params,
            headers=headers,
            json=json_payload,
        )

        max_retries = 5
        retry_delay = 5
        retry_count = 0
        while retry_count < max_retries:
            try:
                print(f"Connecting to stream... Attempt {retry_count + 1}")
                r = requests.get(
                    f'https://politrees-audio-separator-uvr.hf.space/gradio_api/queue/data?session_hash={session_hash}',
                    stream=True
                )
                
                if r.status_code != 200:
                    raise Exception(f"Failed to connect: HTTP {r.status_code}")
                
                print("Connected successfully.")
                for line in r.iter_lines():
                    if line:
                        json_resp = json.loads(line.decode('utf-8').replace('data: ', ''))
                        print(json_resp)
                        if 'process_completed' in json_resp['msg']:
                            print("Process completed.")
                            output_url = json_resp['output']['data'][1]['url']
                            print(f"Output URL: {output_url}")
                            return output_url
                print("Stream ended prematurely. Reconnecting...")
            
            except Exception as e:
                print(f"Error occurred: {e}. Retrying...")
            
            retry_count += 1
            time.sleep(retry_delay)

        print("Max retries reached. Exiting.")
        return None
    except Exception as ex:
        print(f"Unexpected error in get_vocals: {ex}")
        return None



# -------------------------------
# Logging and Model Setup
# -------------------------------
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("whisperx_app")

device = "cpu"
compute_type = "int8"
torch.set_num_threads(os.cpu_count())

models = {
    "tiny": whisperx.load_model("tiny", device, compute_type=compute_type, vad_method='silero'),
    "base": whisperx.load_model("base", device, compute_type=compute_type, vad_method='silero'),
    "small": whisperx.load_model("small", device, compute_type=compute_type, vad_method='silero'),
    "large": whisperx.load_model("large", device, compute_type=compute_type, vad_method='silero'),
    "large-v2": whisperx.load_model("large-v2", device, compute_type=compute_type, vad_method='silero'),
    "large-v3": whisperx.load_model("large-v3", device, compute_type=compute_type, vad_method='silero'),
}

def split_audio_by_pause(audio, sr, pause_threshold, top_db=30, energy_threshold=0.03):
    intervals = librosa.effects.split(audio, top_db=top_db)
    merged_intervals = []
    current_start, current_end = intervals[0]
    
    for start, end in intervals[1:]:
        gap_duration = (start - current_end) / sr
        if gap_duration < pause_threshold:
            current_end = end
        else:
            merged_intervals.append((current_start, current_end))
            current_start, current_end = start, end
    merged_intervals.append((current_start, current_end))
    
    # Filter out segments with low average RMS energy
    filtered_intervals = []
    for start, end in merged_intervals:
        segment = audio[start:end]
        rms = np.mean(librosa.feature.rms(y=segment))
        if rms >= energy_threshold:
            filtered_intervals.append((start, end))
    return filtered_intervals

def seconds_to_srt_time(seconds):
    msec_total = int(round(seconds * 1000))
    hours, msec_remainder = divmod(msec_total, 3600 * 1000)
    minutes, msec_remainder = divmod(msec_remainder, 60 * 1000)
    sec, msec = divmod(msec_remainder, 1000)
    return f"{hours:02d}:{minutes:02d}:{sec:02d},{msec:03d}"

# -------------------------------
# Main Transcription Function
# -------------------------------
def transcribe(audio_file, model_size="base", debug=False, pause_threshold=0.0, vocal_extraction=False, language="en"):
    start_time = time.time()
    final_result = ""
    debug_log = []
    srt_entries = []
    
    try:
        # If vocal extraction is enabled, process the file first
        if vocal_extraction:
            debug_log.append("Vocal extraction enabled; processing input file for vocals...")
            extracted_url = get_vocals(audio_file)
            if extracted_url is not None:
                debug_log.append("Vocal extraction succeeded; downloading extracted audio...")
                response = requests.get(extracted_url)
                if response.status_code == 200:
                    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
                        tmp.write(response.content)
                        audio_file = tmp.name
                    debug_log.append("Extracted audio downloaded and saved for transcription.")
                else:
                    debug_log.append("Failed to download extracted audio; proceeding with original file.")
            else:
                debug_log.append("Vocal extraction failed; proceeding with original audio.")
        
        # Load audio file at 16kHz
        audio, sr = librosa.load(audio_file, sr=16000)
        debug_log.append(f"Audio loaded: {len(audio)/sr:.2f} seconds long at {sr} Hz")
        
        # Select the model and set batch size
        model = models[model_size]
        batch_size = 8 if model_size == "tiny" else 4
        
        # Use provided language if set; otherwise, use language detection.
        if language:
            transcript = model.transcribe(audio, batch_size=batch_size, language=language)
        else:
            transcript = model.transcribe(audio, batch_size=batch_size)
            language = transcript.get("language", "unknown")
        
        # Load alignment model using the specified language
        model_a, metadata = whisperx.load_align_model(language_code=language, device=device)
        
        # If pause_threshold > 0, split audio and process segments individually
        if pause_threshold > 0:
            segments = split_audio_by_pause(audio, sr, pause_threshold)
            debug_log.append(f"Audio split into {len(segments)} segment(s) using a pause threshold of {pause_threshold}s")
            for seg_idx, (seg_start, seg_end) in enumerate(segments):
                audio_segment = audio[seg_start:seg_end]
                seg_duration = (seg_end - seg_start) / sr
                debug_log.append(f"Segment {seg_idx+1}: start={seg_start/sr:.2f}s, duration={seg_duration:.2f}s")
                
                seg_transcript = model.transcribe(audio_segment, batch_size=batch_size, language=language)
                seg_aligned = whisperx.align(
                    seg_transcript["segments"], model_a, metadata, audio_segment, device
                )
                for segment in seg_aligned["segments"]:
                    for word in segment["words"]:
                        adjusted_start = word['start'] + seg_start/sr
                        adjusted_end = word['end'] + seg_start/sr

                        srt_entries.append({
                            'start': adjusted_start,
                            'end': adjusted_end,
                            'word': word['word'].strip()
                        })                       
                        #final_result += f"[{adjusted_start:5.2f}s-{adjusted_end:5.2f}s] {word['word']}\n"
        else:
            # Process the entire audio without splitting
            transcript = model.transcribe(audio, batch_size=batch_size, language=language)
            aligned = whisperx.align(
                transcript["segments"], model_a, metadata, audio, device
            )
            for segment in aligned["segments"]:
                for word in segment["words"]:
                    #final_result += f"[{word['start']:5.2f}s-{word['end']:5.2f}s] {word['word']}\n"
                    srt_entries.append({
                        'start': word['start'],
                        'end': word['end'],
                        'word': word['word'].strip()
                    })

        srt_content = []
        for idx, entry in enumerate(srt_entries, start=1):
            start_time_srt = seconds_to_srt_time(entry['start'])
            end_time_srt = seconds_to_srt_time(entry['end'])
            srt_content.append(
                f"{idx}\n"
                f"{start_time_srt} --> {end_time_srt}\n"
                f"{entry['word']}\n"
            )
        
        final_result = "\n".join(srt_content)
        
        debug_log.append(f"Language used: {language}")
        debug_log.append(f"Batch size: {batch_size}")
        debug_log.append(f"Processed in {time.time()-start_time:.2f}s")
        
    except Exception as e:
        logger.error("Error during transcription:", exc_info=True)
        final_result = "Error occurred during transcription"
        debug_log.append(f"ERROR: {str(e)}")
    
    if debug:
        return final_result, "\n".join(debug_log)
    else:
        return final_result, ""

# -------------------------------
# Gradio Interface
# -------------------------------
with gr.Blocks(title="WhisperX CPU Transcription") as demo:
    gr.Markdown("# WhisperX CPU Transcription with Vocal Extraction Option")
    
    with gr.Row():
        with gr.Column():
            audio_input = gr.Audio(
                label="Upload Audio File",
                type="filepath",
                sources=["upload", "microphone"],
                interactive=True,
            )
            model_selector = gr.Dropdown(
                choices=list(models.keys()),
                value="base",
                label="Model Size",
                interactive=True,
            )
            pause_threshold_slider = gr.Slider(
                minimum=0, maximum=5, step=0.1, value=0,
                label="Pause Threshold (seconds)",
                interactive=True,
                info="Set a pause duration threshold. Audio pauses longer than this will be used to split the audio into segments."
            )
            vocal_extraction_checkbox = gr.Checkbox(
                label="Extract Vocals (improves accuracy on noisy audio)",
                value=False
            )
            language_input = gr.Textbox(
                label="Language Code (e.g., en, es, fr)",
                placeholder="Enter language code",
                value="en"
            )
            debug_checkbox = gr.Checkbox(label="Enable Debug Mode", value=False)
            transcribe_btn = gr.Button("Transcribe", variant="primary")
            
        with gr.Column():
            output_text = gr.Textbox(
                label="Transcription Output",
                lines=20,
                placeholder="Transcription will appear here..."
            )
            debug_output = gr.Textbox(
                label="Debug Information",
                lines=10,
                placeholder="Debug logs will appear here...",
                visible=False,
            )
    
    def toggle_debug(debug_enabled):
        return gr.update(visible=debug_enabled)
    
    debug_checkbox.change(
        toggle_debug,
        inputs=[debug_checkbox],
        outputs=[debug_output]
    )
    
    transcribe_btn.click(
        transcribe,
        inputs=[audio_input, model_selector, debug_checkbox, pause_threshold_slider, vocal_extraction_checkbox, language_input],
        outputs=[output_text, debug_output]
    )

# -------------------------------
# Launch the App
# -------------------------------
if __name__ == "__main__":
    demo.queue(max_size=4).launch()