Spaces:
Sleeping
Sleeping
File size: 17,653 Bytes
542285e 23097b5 e42b8e3 23097b5 e42b8e3 23097b5 05a3992 23097b5 480c4d5 dc41670 26b6248 23097b5 480c4d5 68fe85e 49a98d0 68fe85e 49a98d0 68fe85e d9762c0 d51b983 23097b5 480c4d5 9b83c18 480c4d5 430ab8a 23097b5 d51b983 480c4d5 426b117 9b83c18 480c4d5 9fa869e 8a6fd41 426b117 4dac565 bc91efc 4dac565 23097b5 426b117 23097b5 426b117 23097b5 426b117 23097b5 426b117 23097b5 426b117 23097b5 1d5f06c 426b117 23097b5 1d5f06c f3141ca 20b319d d589298 426b117 480c4d5 426b117 480c4d5 1d5f06c d589298 8a6fd41 426b117 d589298 c19c4ed d589298 d50645c 62c7378 d3d1079 0e107d9 d589298 4e08536 0ac15e1 4e08536 d236803 5b0824e d589298 426b117 4e18fb4 26b6248 4e18fb4 23097b5 d26f33a 3eb8290 480c4d5 3eb8290 1162dad 23097b5 5b0824e 23097b5 7758b50 0d1d8fa 05a3992 a8ba682 efeaf20 7ccc748 efeaf20 a8ba682 7ccc748 05a3992 0d1d8fa 23097b5 5f714a9 1a34b46 027761a 1d5f06c 1a34b46 925ae04 2d447fa d56f961 925ae04 d56f961 925ae04 d56f961 1d5f06c 1a34b46 1d5f06c 1a34b46 547e4d1 925ae04 547e4d1 1a34b46 547e4d1 1a34b46 5f714a9 1a34b46 138d9aa 1a34b46 138d9aa f886eea 5f714a9 138d9aa 1a34b46 027761a d37ff68 1a34b46 6d0c5b3 1a34b46 d589298 6d0c5b3 d589298 1d5f06c d589298 1a34b46 d589298 9b83c18 d589298 1a34b46 d589298 6d0c5b3 9b83c18 d589298 dec3fa0 d589298 7aca32f dec3fa0 ae6dc68 dec3fa0 d589298 441df99 027761a 22978ab 6d0c5b3 d589298 9b83c18 4e18fb4 9b83c18 4e18fb4 dec3fa0 4e18fb4 d589298 4e18fb4 8a6fd41 4e18fb4 027761a 4e18fb4 8a6fd41 4e18fb4 d589298 6d0c5b3 d589298 9b83c18 d589298 eca91f3 d589298 027761a d589298 1162dad 9b83c18 7aca32f 1162dad d236803 bc74ac9 1162dad d236803 1162dad 9b83c18 49a98d0 3c0d911 d9428b7 dbb85c7 d9428b7 9a0b27c 23097b5 1162dad 8a6fd41 e411d54 8a6fd41 d589298 23097b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
import dash
from dash import Dash, html, dcc, callback, Output, Input
from dash import dash_table
import plotly.express as px
from app import app
import pandas as pd
import datetime
import requests
from io import StringIO
from datetime import date
import dash_bootstrap_components as dbc
import plotly.express as px
from dateutil.parser import parse
def convert_to_datetime(input_str, parserinfo=None):
return parse(input_str, parserinfo=parserinfo)
server = app.server
url='https://drive.google.com/file/d/1NaXOYHQFF5UO5rQr4rn8Lr3bkYMSOq4_/view?usp=sharing'
url='https://drive.google.com/uc?id=' + url.split('/')[-2]
# reading of file
df = pd.read_csv(url)
# removing Aborto
df = df[df["Topic"]!="Aborto"]
# filtering the file for more than 4 tokens
df = df[df['Headline'].str.split().str.len().gt(4)]
df['date'] = pd.to_datetime(df['date'])
unique_domains = df['domain_folder_name'].unique()
# print(unique_domains)
unique_topics = df['Topic'].unique()
# print(unique_topics)
#copying a column
df["Veículos de notícias"] = df["domain_folder_name"]
# df = df.rename(columns={df.columns[4]: "Veículos de notícias"})
df['FinBERT_label'] = df['FinBERT_label'].astype(str)
df['FinBERT_label'].replace({
# '3.0': 'positive',
# '2.0': 'neutral',
# '1.0': 'negative'
'3.0': 'positivo',
'2.0': 'neutro',
'1.0': 'negativo'
}, inplace=True)
counts = df.groupby(['date', 'Topic', 'domain_folder_name', 'FinBERT_label']).size().reset_index(name='count')
counts['count'] = counts['count'].astype('float64')
counts['rolling_mean_counts'] = counts['count'].rolling(window=30, min_periods=2).mean()
df_pos = counts[[x in ['positivo'] for x in counts.FinBERT_label]]
df_neu = counts[[x in ['neutro'] for x in counts.FinBERT_label]]
df_neg = counts[[x in ['negativo'] for x in counts.FinBERT_label]]
# app.layout
app.layout = dbc.Container([
dbc.Row([ # row 1
dbc.Col([html.H1('Evolução temporal de sentimento em títulos de notícias')],
className="text-center mt-3 mb-1")]),
dbc.Row([ # row 1
dbc.Col([dcc.Markdown('## [Sobre o projeto](https://github.com/caiocmello/SentDiario)',link_target="_blank")],
className="text-center mt-3 mb-1")]),
dbc.Row([ # row 2
dbc.Label("Selecione um período (mm/dd/aaaa):", className="fw-bold")]),
dbc.Row([ # row 3
dcc.DatePickerRange(
id='date-range',
min_date_allowed=df['date'].min().date(),
max_date_allowed=df['date'].max().date(),
initial_visible_month=df['date'].min().date(),
start_date=df['date'].min().date(),
end_date=df['date'].max().date())]),
dbc.Row([ # row 4
dbc.Label("Escolha um tópico:", className="fw-bold")
]),
dbc.Row([ # row 5
dbc.Col(
dcc.Dropdown(
id="topic-selector",
options=[
{"label": topic, "value": topic} for topic in unique_topics
],
value="Imigrantes", # Set the initial value
style={"width": "50%"})
)
]),
dbc.Row([ # row 6
dbc.Col(dcc.Graph(id='line-graph-1'))
]),
dbc.Row([ # row 7 but needs to be updated
dbc.Col(dcc.Graph(id="bar-graph-1"))
]),
# html.Div(id='pie-container-1'),
dbc.Row([ # row 9
dbc.Col(dcc.Graph(id='pie-graph-1'),
)
]),
dbc.Row([ # row 7
dbc.Label("Escolha um site de notícias:", className="fw-bold")
]),
dbc.Row([ # row 8
dbc.Col(
dcc.Dropdown(
id="domain-selector",
options=[
{"label": domain, "value": domain} for domain in unique_domains
],
value="expresso-pt", # Set the initial value
style={"width": "50%"})
)
]),
dbc.Row([ # row 9
dbc.Col(dcc.Graph(id='line-graph-2'),
)
]),
# dbc.Row([ # row 9
# dbc.Col(dcc.Graph(id='line-graph-2'),
# )
# ]),
# dbc.Row([ # row 10
# dbc.Col(dcc.Graph(id='line-graph-3'),
# )
# ]),
# dbc.Row([ # row 11
# dbc.Col(dcc.Graph(id='line-graph-4'),
# )
# ]),
# html.Div(id='pie-container-2'),
dbc.Row([ # row 9
dbc.Col(dcc.Graph(id='pie-graph-2'),
)
]),
dbc.Row([ # row
dbc.Label('Lista de notícias encontradas para o tópico e meio de comunicação selecionados', className="fw-bold")
]),
dbc.Row([ # row 9
dbc.Col(
dash_table.DataTable(
id='headlines-table',
style_as_list_view=True,
columns=[
{"name":"Título", "id":"link", "presentation":"markdown"},
# {"name": "Headline", "id": "Headline"},
# {"name": "URL", "id": "url"},
{"name": "Date", "id": "date", "type":"datetime"},
{"name": "Etiqueta de sentimento", "id": "FinBERT_label"},
],
style_table={'overflowX': 'auto'},
style_cell={
'textAlign': 'left',
# 'whiteSpace': 'normal',
# 'height': 'auto',
# 'minWidth': '50px', 'width': '180px', 'maxWidth': '180px',
},
page_action="native",
page_current= 0,
page_size= 10,
)
)
])
])
# # Create a function to generate pie charts
# def generate_pie_chart(category):
# labels = data[category]['labels']
# values = data[category]['values']
# trace = go.Pie(labels=labels, values=values)
# layout = go.Layout(title=f'Pie Chart - {category}')
# return dcc.Graph(
# figure={
# 'data': [trace],
# 'layout': layout
# }
# )
# callback decorator
@app.callback(
Output('line-graph-1', 'figure'),
Output('bar-graph-1','figure'),
Output('pie-graph-1', 'figure'),
Output('line-graph-2', 'figure'),
Output('pie-graph-2', 'figure'),
Output('headlines-table', 'data'),
Input("topic-selector", "value"),
Input("domain-selector", "value"),
Input('date-range', 'start_date'),
Input('date-range', 'end_date')
)
def update_output(selected_topic, selected_domain, start_date, end_date):
#log
print("topic:",selected_topic,"domain:",selected_domain,"start:", start_date,"end:", end_date,"\n\n")
# This is a hack to filter dates to confine to respective topic boundaries
min_topic_date = df[df["Topic"] == selected_topic]["date"].min()
max_topic_date = df[df["Topic"] == selected_topic]["date"].max()
print("min",min_topic_date,"max",max_topic_date)
#if start visualisation from where the topic starts
start_date = min_topic_date if (min_topic_date > convert_to_datetime(start_date)) else start_date
end_date = max_topic_date if (max_topic_date < convert_to_datetime(end_date)) else end_date
print("After: Sd",start_date,"Ed",end_date)
# filter dataframes based on updated data range
mask_1 = ((df["Topic"] == selected_topic) & (df['date'] >= start_date) & (df['date'] <= end_date))
df_filtered = df.loc[mask_1]
# print(df_filtered.shape, df.columns)
if len(df_filtered)>0:
#create line graphs based on filtered dataframes
line_fig_1 = px.line(df_filtered, x="date", y="normalised results",
color='Veículos de notícias', title="O gráfico mostra a evolução temporal de sentimento dos títulos de notícias <br> Numa escala de -1 (negativo) a 1 (positivo), sendo 0 (neutro)")
# Veículos de notícias
#set x-axis title and y-axis title in line graphs
line_fig_1.update_layout(
xaxis_title='Data',
yaxis_title='Classificação de Sentimento',
title_x=0.5
# font=dict(
# family="Courier New, monospace",
# size=18, # Set the font size here
# color="RebeccaPurple"
# )
)
#set label format on y-axis in line graphs
line_fig_1.update_xaxes(tickformat="%b %d<br>%Y")
# Bar Graph start
# Convert 'period' column to datetime
# df_filtered['period'] = pd.to_datetime(df_filtered['date'], format='%m/%Y')
df_filtered['period'] = pd.to_datetime(df_filtered['date']).to_numpy().astype('datetime64[M]')
grouped_df = df_filtered.groupby(['period', 'Veículos de notícias']).size().reset_index(name='occurrences')
# Sort DataFrame by 'period' column
grouped_df = grouped_df.sort_values(by='period')
# Create a list of all unique media
all_media = df_filtered['domain_folder_name'].unique()
# Create a date range from Jan/2000 to the last month in the dataset
date_range = pd.date_range(start=df_filtered['date'].min(), end=df_filtered['date'].max(), freq='MS')
# date_range = pd.date_range(start="2000-01-01", end=df_filtered['date'].max(), freq='MS')
# Create a MultiIndex with all combinations of date_range and all_media
idx = pd.MultiIndex.from_product([date_range, all_media], names=['period', 'Veículos de notícias'])
# Reindex the DataFrame to include all periods and media
grouped_df = grouped_df.set_index(['period', 'Veículos de notícias']).reindex(idx, fill_value=0).reset_index()
# print(grouped_df.shape)
bar_fig_1 = px.bar(grouped_df, x='period', y='occurrences', color='Veículos de notícias',
labels={'period': 'Período', 'occurrences': 'Número de notícias', 'Veículos de notícias': 'Portal'},
title='Número de notícias por período de tempo')
bar_fig_1.update_layout(title_x=0.5)
# bar_fig_1.update_xaxes(tickformat="%b %d<br>%Y")
# Bar Graph ends
# line-fig 2 starts
# filter dataframes based on updated data range
# Filtering data...
df_filtered_2 = counts[(counts['Topic'] == selected_topic) &
(counts['domain_folder_name'] == selected_domain) &
(counts['date'] >= start_date) &
(counts['date'] <= end_date)]
# Create a date range for the selected period
date_range = pd.date_range(start=start_date, end=end_date)
# Create a DataFrame with all possible combinations of classes, topics, and dates
all_combinations = pd.MultiIndex.from_product([['positivo', 'neutro', 'negativo'],
[selected_topic],
[selected_domain],
date_range],
names=['FinBERT_label', 'Topic', 'domain_folder_name', 'date'])
df_all_combinations = pd.DataFrame(index=all_combinations).reset_index()
# Merge filtered DataFrame with DataFrame of all combinations
merged_df = pd.merge(df_all_combinations, df_filtered_2, on=['FinBERT_label', 'Topic', 'domain_folder_name', 'date'], how='left')
# Map original labels to their translated versions
label_translation = {'positive': 'positivo', 'neutral': 'neutro', 'negative': 'negativo'}
# merged_df['FinBERT_label_transformed'] = merged_df['FinBERT_label'].map(label_translation)
# Fill missing values with zeros
merged_df['count'].fillna(0, inplace=True)
merged_df['rolling_mean_counts'].fillna(0, inplace=True)
# Define colors for each label
label_colors = {'positivo': '#039a4d', 'neutro': '#3c03f4', 'negativo': '#ca3919'}
# Create line graph...
line_fig_2 = px.line(merged_df, x="date", y="count", color="FinBERT_label",
line_group="FinBERT_label", title="Sentimento ao longo do tempo",
labels={"count": "Número de notícias", "date": "Date"},
color_discrete_sequence=['#039a4d', '#3c03f4', '#ca3919'] #[label_colors[label] for label in all_combinations.index]
)
# Update layout...
line_fig_2.update_layout(xaxis_title='Date', yaxis_title='Número de artigos de notícias',
xaxis=dict(tickformat="%b %d<br>%Y"), legend_title="Etiqueta de sentimento",title_x=0.5)
# line-fig 2 ends
# df_filtered['FinBERT_label_transformed'] = df_filtered['FinBERT_label'].map(label_translation)
# Group by FinBERT_label and count occurrences
label_counts_all = df_filtered['FinBERT_label'].value_counts()
# Calculate percentage of each label
label_percentages_all = (label_counts_all / label_counts_all.sum()) * 100
# Plot general pie chart
pie_chart_1 = px.pie(
values=label_percentages_all,
names=label_percentages_all.index,
title='Distribuição Geral',
color_discrete_sequence=[label_colors[label] for label in label_percentages_all.index] #['#039a4d', '#3c03f4', '#ca3919']
)
pie_chart_1.update_layout(title_x=0.5)
# Get unique media categories
media_categories = df_filtered['Veículos de notícias'].unique()
# Filter DataFrame for current media category
media_df = df_filtered[df_filtered['Veículos de notícias'] == selected_domain]
# Group by FinBERT_label and count occurrences
label_counts = media_df['FinBERT_label'].value_counts()
# Calculate percentage of each label
label_percentages = (label_counts / label_counts.sum()) * 100
# Plot pie chart
pie_chart_2 = px.pie(
values=label_percentages,
names=label_percentages.index,
title=f'Distribuição para {selected_domain}',
color_discrete_sequence=[label_colors[label] for label in label_percentages.index]
)
pie_chart_2.update_layout(title_x=0.5)
# pie_chart_2 = dcc.Graph(figure=fig)
# pie_chart_2 = html.Div(fig,className='four columns')
# Convert FinBERT_label to categorical for better sorting
media_df['FinBERT_label'] = pd.Categorical(media_df['FinBERT_label'],
categories=['positivo', 'neutro', 'negativo'],
ordered=True)
def f(row):
return "[{0}]({1})".format(row["Headline"],row["url"])
media_df["link"] = media_df.apply(f, axis=1)
# Sort DataFrame by sentiment label and date
data_table_1 = media_df.sort_values(by=['date', "FinBERT_label"])
data_table_1['date'] = pd.to_datetime(data_table_1['date']).dt.strftime('%m-%d-%Y')
return line_fig_1, bar_fig_1, pie_chart_1, line_fig_2, pie_chart_2, data_table_1.to_dict('records')
else:
return {'data': []},{'data': []} ,{'data': []} ,{'data': []} , {'data': []}, {'data': []}
# return line_fig_1
# df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminder_unfiltered.csv')
# app.layout = html.Div([
# html.H1(children='Title of Dash App', style={'textAlign':'center'}),
# dcc.Dropdown(df.country.unique(), 'Canada', id='dropdown-selection'),
# dcc.Graph(id='graph-content')
# ])
# @callback(
# Output('graph-content', 'figure'),
# Input('dropdown-selection', 'value')
# )
# def update_graph(value):
# dff = df[df.country==value]
# return px.line(dff, x='year', y='pop')
# # Define callback function for updating the headlines table
# @app.callback(
# Output('headlines-table', 'data'),
# Input("topic-selector", "value"),
# Input("domain-selector", "value"),
# Input('date-range', 'start_date'),
# Input('date-range', 'end_date')
# )
# def update_headlines_table(selected_topic, selected_domain, start_date, end_date):
# # Filtering data...
# tab_content_2 = dcc.Markdown('''
# # Sobre o projeto
# ''')
# app.layout = html.Div(
# [
# dbc.Card(
# [
# dbc.CardHeader(
# dbc.Tabs(
# [
# dbc.Tab(label="SentDiário", tab_id="tab-1"),
# dbc.Tab(label="Sobre o projeto", tab_id="tab-2"),
# ],
# id="tabs",
# active_tab="tab-1",
# )
# ),
# dbc.CardBody(html.Div(id="content", className="card-text")),
# ]
# )
# ]
# )
# @app.callback(Output("content", "children"), [Input("tabs", "active_tab")])
# def switch_tab(at):
# if at == "tab-1":
# return tab_content_1
# elif at == "tab-2":
# return tab_content_2
# return html.P("This shouldn't ever be displayed...")
if __name__ == '__main__':
app.run_server(debug=True)
|