Spaces:
Sleeping
Sleeping
File size: 2,058 Bytes
967a22b c15ebd3 85358ed c15ebd3 85358ed 967a22b c15ebd3 85358ed c15ebd3 85358ed c15ebd3 85358ed c15ebd3 85358ed c15ebd3 85358ed c15ebd3 85358ed c15ebd3 7242fab c15ebd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
# from transformers import pipeline
# import gradio as gr
# from PIL import Image
# # Initialize the image classification pipeline with the specific model
# pipe = pipeline("image-classification", model="prithivMLmods/Age-Classification-SigLIP2")
# # Prediction function
# def predict(input_img):
# # Get the predictions from the pipeline
# predictions = pipe(input_img)
# result = {p["label"]: p["score"] for p in predictions}
# # Return the image and the top predictions as a string
# top_labels = [f"{label}: {score:.2f}" for label, score in result.items()]
# return input_img, "\n".join(top_labels)
# # Create the Gradio interface
# gradio_app = gr.Interface(
# fn=predict,
# inputs=gr.Image(label="Select Image", sources=['upload', 'webcam'], type="pil"),
# outputs=[
# gr.Image(label="Processed Image"),
# gr.Textbox(label="Result", placeholder="Top predictions here")
# ],
# title="Age Classification",
# description="Upload or capture an image to classify age using the SigLIP2 model."
# )
# # Launch the app
# gradio_app.launch()
from transformers import pipeline
import gradio as gr
from PIL import Image
# Load the pretrained model pipeline
classifier = pipeline("image-classification", model="sherab65/age-classification")
# Prediction function
def predict(input_img):
predictions = classifier(input_img)
# Format predictions
result = {p["label"]: p["score"] for p in predictions}
top_labels = [f"{label}: {score:.2f}" for label, score in result.items()]
return input_img, "\n".join(top_labels)
# Create Gradio interface
gradio_app = gr.Interface(
fn=predict,
inputs=gr.Image(label="Select Image", sources=["upload", "webcam"], type="pil"),
outputs=[
gr.Image(label="Uploaded Image"),
gr.Textbox(label="Predicted Age Group(s)")
],
title="Age Classification using Hugging Face Model",
description="Upload or capture an image to classify the person's age group."
)
# Launch the app
gradio_app.launch()
|