File size: 6,304 Bytes
28b8e02
 
 
 
 
 
 
 
9ddaa27
ee48c56
7c23eb0
 
9ddaa27
 
39b722c
5629bb7
6d417ec
28b8e02
41cf03d
 
28b8e02
 
6d417ec
41cf03d
 
6d417ec
7c23eb0
 
 
6d417ec
 
 
28b8e02
6d417ec
41cf03d
9ddaa27
 
6d417ec
9ddaa27
 
6d417ec
9ddaa27
50c341d
 
6d417ec
50c341d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d417ec
50c341d
6d417ec
 
50c341d
6d417ec
 
28b8e02
cddab55
6d417ec
 
5629bb7
 
49c543f
 
 
 
66a3591
d3b2a2e
49c543f
5629bb7
66a3591
28b8e02
 
8c1aede
49c543f
66a3591
8c1aede
6d417ec
49c543f
6d417ec
28b8e02
6d417ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c1aede
6d417ec
 
66a3591
8c1aede
28b8e02
c68ca70
6d417ec
 
28b8e02
6d417ec
 
 
 
 
28b8e02
6d417ec
28b8e02
6d417ec
28b8e02
7c23eb0
66a3591
7c23eb0
ab848e6
7c23eb0
cddab55
7c23eb0
 
ef6809f
7c23eb0
 
 
 
 
28b8e02
6d417ec
28b8e02
 
 
6d417ec
 
28b8e02
 
 
 
 
 
 
6d417ec
28b8e02
 
 
6d417ec
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import gradio as gr
import time
from datetime import datetime
import pandas as pd
from sentence_transformers import SentenceTransformer
from qdrant_client import QdrantClient
from qdrant_client.models import Filter, FieldCondition, MatchValue
import os
from rapidfuzz import process, fuzz
from pythainlp.tokenize import word_tokenize
from pyairtable import Table
from pyairtable import Api
import pickle
import re
import unicodedata

# Setup Qdrant Client
qdrant_client = QdrantClient(
    url=os.environ.get("Qdrant_url"),
    api_key=os.environ.get("Qdrant_api"),
)

# Airtable Config
AIRTABLE_API_KEY = os.environ.get("airtable_api")
BASE_ID = os.environ.get("airtable_baseid")
TABLE_NAME = "Feedback_search"
api = Api(AIRTABLE_API_KEY)
table = api.table(BASE_ID, TABLE_NAME)

# Load model
model = SentenceTransformer('intfloat/multilingual-e5-small')
collection_name = "product_E5"

# Load whitelist
with open("keyword_whitelist.pkl", "rb") as f:
    keyword_whitelist = pickle.load(f)

# Utils
def normalize(text: str) -> str:
    text = unicodedata.normalize("NFC", text)
    return text.replace("เแ", "แ").replace("เเ", "แ").strip().lower()

def smart_tokenize(text: str) -> list:
    tokens = word_tokenize(text.strip(), engine="newmm")
    return tokens if tokens and len("".join(tokens)) >= len(text.strip()) * 0.5 else [text.strip()]

def correct_query_merge_phrases(query: str, whitelist, threshold=80, max_ngram=3):
    query_norm = normalize(query)
    tokens = smart_tokenize(query_norm)
    corrected = []
    i = 0
    while i < len(tokens):
        matched = False
        for n in range(min(max_ngram, len(tokens) - i), 0, -1):
            phrase = "".join(tokens[i:i+n])
            match, score, _ = process.extractOne(phrase, whitelist, scorer=fuzz.token_sort_ratio)
            if score >= threshold:
                corrected.append(match)
                i += n
                matched = True
                break
        if not matched:
            corrected.append(tokens[i])
            i += 1
    return "".join([word for word in corrected if len(word) > 1 or word in whitelist])

# Global state
latest_query_result = {"query": "", "result": "", "raw_query": "", "time": ""}

# Main Search
def search_product(query):
    start_time = time.time()
    latest_query_result["raw_query"] = query
    corrected_query = correct_query_merge_phrases(query, keyword_whitelist)
    query_embed = model.encode("query: " + corrected_query)

    try:
        result = qdrant_client.query_points(
            collection_name=collection_name,
            query=query_embed.tolist(),
            with_payload=True,
            query_filter=Filter(must=[FieldCondition(key="type", match=MatchValue(value="product"))]),
            limit=50
        ).points
    except Exception as e:
        return f"<p>❌ Qdrant error: {str(e)}</p>"

    elapsed = time.time() - start_time
    html_output = f"<p>⏱ <strong>{elapsed:.2f} วินาที</strong></p>"
    if corrected_query != query:
        html_output += f"<p>🔧 แก้คำค้นจาก: <code>{query}</code> → <code>{corrected_query}</code></p>"

    html_output += '<div style="display: grid; grid-template-columns: repeat(auto-fill, minmax(220px, 1fr)); gap: 20px;">'

    result_summary, found = "", False
    for res in result:
        if res.score > 0.8:
            found = True
            name = res.payload.get("name", "ไม่ทราบชื่อสินค้า")
            score = f"{res.score:.4f}"
            img_url = res.payload.get("imageUrl", "")
            price = res.payload.get("price", "ไม่ระบุ")
            brand = res.payload.get("brand", "")

            html_output += f"""
            <div style="border: 1px solid #ddd; border-radius: 8px; padding: 10px; text-align: center; box-shadow: 1px 1px 5px rgba(0,0,0,0.1); background: #fff;">
                <img src="{img_url}" style="width: 100%; max-height: 150px; object-fit: contain; border-radius: 4px;">
                <div style="margin-top: 10px;">
                    <div style="font-weight: bold; font-size: 14px;">{name}</div>
                    <div style="color: gray; font-size: 12px;">{brand}</div>
                    <div style="color: green; margin: 4px 0;">฿{price}</div>
                    <div style="font-size: 12px; color: #555;">score: {score}</div>
                </div>
            </div>
            """
            result_summary += f"{name} (score: {score}) | "

    html_output += "</div>"

    if not found:
        html_output += '<div style="text-align: center; font-size: 18px; color: #a00; padding: 30px;">❌ ไม่พบสินค้าที่เกี่ยวข้องกับคำค้นนี้</div>'
        return html_output

    latest_query_result.update({
        "query": corrected_query,
        "result": result_summary.strip(),
        "time": elapsed,
    })

    return html_output

# Feedback logging
def log_feedback(feedback):
    try:
        now = datetime.now().strftime("%Y-%m-%d")
        table.create({
            "model": "E5 (intfloat/multilingual-e5-small)",
            "timestamp": now,
            "raw_query": latest_query_result["raw_query"],
            "query": latest_query_result["query"],
            "result": latest_query_result["result"],
            "time(second)": latest_query_result["time"],
            "feedback": feedback
        })
        return "✅ Feedback saved to Airtable!"
    except Exception as e:
        return f"❌ Failed to save feedback: {str(e)}"

# Gradio UI
with gr.Blocks() as demo:
    gr.Markdown("## 🔎 Product Semantic Search (Vector Search + Qdrant)")

    query_input = gr.Textbox(label="พิมพ์คำค้นหา")
    result_output = gr.HTML(label="📋 ผลลัพธ์")

    with gr.Row():
        match_btn = gr.Button("✅ ตรง")
        not_match_btn = gr.Button("❌ ไม่ตรง")

    feedback_status = gr.Textbox(label="📬 สถานะ Feedback")

    query_input.submit(search_product, inputs=[query_input], outputs=result_output)
    match_btn.click(lambda: log_feedback("match"), outputs=feedback_status)
    not_match_btn.click(lambda: log_feedback("not_match"), outputs=feedback_status)

# Run
demo.launch(share=True)