File size: 6,878 Bytes
28b8e02
 
 
 
 
 
 
7a2742e
7c23eb0
 
9ddaa27
39b722c
5629bb7
6d417ec
28b8e02
41cf03d
 
c05c4ca
28b8e02
 
6d417ec
41cf03d
 
6d417ec
7c23eb0
 
 
08defce
68b12c7
 
 
08defce
6d417ec
374e7c8
 
7a2742e
9ddaa27
374e7c8
 
9ddaa27
6d417ec
9ddaa27
6d417ec
 
50c341d
08defce
68b12c7
79da1d1
 
28b8e02
cddab55
08defce
cd3f6c0
68b12c7
5629bb7
 
49c543f
 
 
 
66a3591
d3b2a2e
49c543f
5629bb7
79da1d1
 
28b8e02
68b12c7
7a2742e
 
 
 
 
 
4ccade9
7a2742e
 
4ccade9
7a2742e
4ccade9
7a2742e
4ccade9
 
 
 
 
 
 
7a2742e
 
 
 
 
dbd7784
28b8e02
8c1aede
49c543f
66a3591
6d417ec
 
08defce
28b8e02
4ccade9
6d417ec
 
4ccade9
6d417ec
 
 
 
 
 
 
 
 
 
 
 
 
8c1aede
6d417ec
 
66a3591
8c1aede
28b8e02
c68ca70
6d417ec
28b8e02
6d417ec
 
 
 
 
28b8e02
79da1d1
28b8e02
08defce
68b12c7
7c23eb0
66a3591
7c23eb0
68b12c7
7c23eb0
cddab55
7c23eb0
 
ef6809f
7c23eb0
 
 
 
 
28b8e02
6d417ec
28b8e02
68b12c7
08defce
68b12c7
6d417ec
79da1d1
28b8e02
 
 
 
 
 
 
79da1d1
 
 
 
 
68b12c7
 
28b8e02
6d417ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import gradio as gr
import time
from datetime import datetime
from sentence_transformers import SentenceTransformer
from qdrant_client import QdrantClient
from qdrant_client.models import Filter, FieldCondition, MatchValue
import os
from rapidfuzz import fuzz
from pyairtable import Table
from pyairtable import Api
import re
import unicodedata

# Setup Qdrant Client
qdrant_client = QdrantClient(
    url=os.environ.get("Qdrant_url"),
    api_key=os.environ.get("Qdrant_api"),
    timeout=30.0
)

# Airtable Config
AIRTABLE_API_KEY = os.environ.get("airtable_api")
BASE_ID = os.environ.get("airtable_baseid")
TABLE_NAME = "Feedback_search"
api = Api(AIRTABLE_API_KEY)
table = api.table(BASE_ID, TABLE_NAME)

# Preload Models
model = SentenceTransformer("BAAI/bge-m3")
collection_name = "product_bge-m3"
threshold = 0.45

# Utils
def is_non_thai(text):
    return re.match(r'^[A-Za-z0-9&\-\s]+$', text) is not None

def normalize(text: str) -> str:
    if is_non_thai(text):
        return text.strip()
    text = unicodedata.normalize("NFC", text)
    return text.replace("เแ", "แ").replace("เเ", "แ").strip().lower()

# Global state
latest_query_result = {"query": "", "result": "", "raw_query": "", "time": ""}

# Search Function
def search_product(query):
    yield gr.update(value="🔄 กำลังค้นหา..."), ""

    start_time = time.time()
    latest_query_result["raw_query"] = query

    corrected_query = normalize(query)
    query_embed = model.encode(corrected_query)

    try:
        result = qdrant_client.query_points(
            collection_name=collection_name,
            query=query_embed.tolist(),
            with_payload=True,
            query_filter=Filter(must=[FieldCondition(key="type", match=MatchValue(value="product"))]),
            limit=50
        ).points
    except Exception as e:
        yield gr.update(value="❌ Qdrant error"), f"<p>❌ Qdrant error: {str(e)}</p>"
        return

    if len(result) > 0:
      topk = 50  # ดึงมา rerank แค่ 50 อันดับแรกจาก Qdrant
      result = result[:topk]

      scored = []
      for r in result:
          name = r.payload.get("name", "")

          # ถ้า query สั้นเกินไป ให้ fuzzy_score = 0 เพื่อกันเพี้ยน
          if len(corrected_query) >= 3 and name:
            fuzzy_score = fuzz.partial_ratio(corrected_query, name) / 100.0
          else:
            fuzzy_score = 0.0
          # รวม hybrid score
          if fuzzy_score < 0.5:
            hybrid_score = r.score
          else:
            hybrid_score = 0.7 * r.score + 0.3 * fuzzy_score
          r.payload["score"] = hybrid_score  # เก็บลง payload ใช้เทียบ treshold ตอนเเสดงผล
          r.payload["fuzzy_score"] = fuzzy_score # เก็บไว้เผื่อ debug
          r.payload['semantic_score'] = r.score # เก็บไว้เผื่อ debug
          scored.append((r, hybrid_score))

      # เรียงตาม hybrid score แล้วกรองผลลัพธ์ที่ hybrid score ต่ำเกิน
      scored = sorted(scored, key=lambda x: x[1], reverse=True)
      result = [r[0] for r in scored]

    elapsed = time.time() - start_time
    html_output = f"<p>⏱ <strong>{elapsed:.2f} วินาที</strong></p>"
    if corrected_query != query:
        html_output += f"<p>🔧 แก้คำค้นจาก: <code>{query}</code> → <code>{corrected_query}</code></p>"
    html_output += '<div style="display: grid; grid-template-columns: repeat(auto-fill, minmax(220px, 1fr)); gap: 20px;">'
    result_summary, found = "", False

    for res in result:
        if res.payload["score"] >= threshold:
            found = True
            name = res.payload.get("name", "ไม่ทราบชื่อสินค้า")
            score = f"{res.payload['score']:.4f}"
            img_url = res.payload.get("imageUrl", "")
            price = res.payload.get("price", "ไม่ระบุ")
            brand = res.payload.get("brand", "")

            html_output += f"""
            <div style="border: 1px solid #ddd; border-radius: 8px; padding: 10px; text-align: center; box-shadow: 1px 1px 5px rgba(0,0,0,0.1); background: #fff;">
                <img src="{img_url}" style="width: 100%; max-height: 150px; object-fit: contain; border-radius: 4px;">
                <div style="margin-top: 10px;">
                    <div style="font-weight: bold; font-size: 14px;">{name}</div>
                    <div style="color: gray; font-size: 12px;">{brand}</div>
                    <div style="color: green; margin: 4px 0;">฿{price}</div>
                    <div style="font-size: 12px; color: #555;">score: {score}</div>
                </div>
            </div>
            """
            result_summary += f"{name} (score: {score}) | "

    html_output += "</div>"

    if not found:
        html_output += '<div style="text-align: center; font-size: 18px; color: #a00; padding: 30px;">❌ ไม่พบสินค้าที่เกี่ยวข้องกับคำค้นนี้</div>'

    latest_query_result.update({
        "query": corrected_query,
        "result": result_summary.strip(),
        "time": elapsed,
    })

    yield gr.update(value="✅ ค้นหาเสร็จแล้ว!"), html_output

# Feedback Function
def log_feedback(feedback):
    try:
        now = datetime.now().strftime("%Y-%m-%d")
        table.create({
            "model": "BGE M3",
            "timestamp": now,
            "raw_query": latest_query_result["raw_query"],
            "query": latest_query_result["query"],
            "result": latest_query_result["result"],
            "time(second)": latest_query_result["time"],
            "feedback": feedback
        })
        return "✅ Feedback saved to Airtable!"
    except Exception as e:
        return f"❌ Failed to save feedback: {str(e)}"

# Gradio UI
with gr.Blocks() as demo:
    gr.Markdown("## 🔎 Product Semantic Search (BGE M3 + Qdrant)")

    query_input = gr.Textbox(label="พิมพ์คำค้นหา")
    result_output = gr.HTML(label="📋 ผลลัพธ์")
    status_output = gr.Textbox(label="🕒 สถานะ", interactive=False)

    with gr.Row():
        match_btn = gr.Button("✅ ตรง")
        not_match_btn = gr.Button("❌ ไม่ตรง")

    feedback_status = gr.Textbox(label="📬 สถานะ Feedback")

    query_input.submit(
        search_product,
        inputs=[query_input],
        outputs=[status_output, result_output]
    )
    match_btn.click(fn=lambda: log_feedback("match"), outputs=feedback_status)
    not_match_btn.click(fn=lambda: log_feedback("not_match"), outputs=feedback_status)

demo.launch(share=True)