Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import json | |
import os | |
from datetime import datetime, timedelta, timezone | |
import gradio as gr | |
from src.display.formatting import styled_error, styled_message, styled_warning | |
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO | |
from src.submission.check_validity import ( | |
already_submitted_models, | |
check_model_card, | |
get_model_size, | |
is_model_on_hub, | |
) | |
from huggingface_hub import hf_hub_download | |
REQUESTED_MODELS = None | |
USERS_TO_SUBMISSION_DATES = None | |
def add_new_eval( | |
model: str, | |
progress=gr.Progress() | |
): | |
global REQUESTED_MODELS | |
global USERS_TO_SUBMISSION_DATES | |
if not REQUESTED_MODELS: | |
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH) | |
yield "..." | |
user_name = "" | |
model_path = model | |
if "/" in model: | |
user_name = model.split("/")[0] | |
model_path = model.split("/")[1] | |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") | |
progress(0.1, desc=f"Checking model {model} on hub") | |
if not is_model_on_hub(model_name=model, token=TOKEN, test_tokenizer=True): | |
yield styled_error("Model does not exist on HF Hub. Please select a valid model name.") | |
return | |
progress(0.2, desc=f"Checking for banned orgs") | |
##check for org banning | |
banned_orgs = [{ | |
'org_name':'TEMPLATE', | |
'banning_reason':'Submitting contaminated models' | |
}] | |
if user_name in [banned_org['org_name'] for banned_org in banned_orgs]: | |
yield styled_error( | |
f"Your org \"{user_name}\" is banned from submitting models on ABL. If you think this is a mistake then please contact [email protected]" | |
) | |
return | |
# Is the model info correctly filled? | |
try: | |
model_info = API.model_info(repo_id=model) | |
except Exception: | |
yield styled_error("Could not get your model information. Please fill it up properly.") | |
return | |
progress(0.3, desc=f"Checking model size") | |
model_size = get_model_size(model_info=model_info) | |
if model_size>15: | |
yield styled_error("We currently accept community-submitted models up to 15 billion parameters only. If you represent an organization then please contact us at [email protected]") | |
return | |
# Were the model card and license filled? | |
try: | |
license = model_info.cardData["license"] | |
except Exception: | |
yield styled_error("Please select a license for your model") | |
return | |
progress(0.5, desc=f"Checking model card") | |
modelcard_OK, error_msg = check_model_card(model) | |
if not modelcard_OK: | |
yield styled_error(error_msg) | |
return | |
##check if org have submitted in the last 30 days | |
progress(0.6, desc=f"Checking last submission date") | |
previous_user_submissions = USERS_TO_SUBMISSION_DATES.get(user_name) | |
if previous_user_submissions: | |
previous_user_submission_dates = [datetime.strptime(date.replace("T"," ").split(" ")[0], "%Y-%m-%d") for date in previous_user_submissions] | |
previous_user_submission_dates.sort(reverse=True) | |
most_recent_submission = previous_user_submission_dates[0] | |
time_since_last_submission = datetime.now() - most_recent_submission | |
if time_since_last_submission < timedelta(days=30): | |
yield styled_warning( | |
f"Your org \"{user_name}\" have already submitted a model in the last 30 days. Please wait before submitting another model. For exceptions please contact [email protected]" | |
) | |
return | |
progress(0.8, desc=f"Checking same model submissions") | |
# Check for duplicate submission | |
if f"{model}" in REQUESTED_MODELS: | |
yield styled_warning("This model has already been submitted.") | |
return | |
# Seems good, creating the eval | |
print("Preparing a new eval") | |
eval_entry = { | |
"model": model, | |
"model_sha": model_info.sha, | |
"status": "PENDING", | |
"submitted_time": current_time, | |
"likes": model_info.likes, | |
"params": model_size, | |
"license": license, | |
} | |
progress(0.9, desc=f"Creating Eval ...") | |
print("Creating eval file") | |
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" | |
os.makedirs(OUT_DIR, exist_ok=True) | |
out_path = f"{OUT_DIR}/{model_path}_eval_request.json" | |
with open(out_path, "w") as f: | |
f.write(json.dumps(eval_entry)) | |
##update queue file | |
queue_file_path = "./eval_queue.json" | |
## download queue_file from repo using HuggingFace hub API, update it and upload again | |
queue_file = hf_hub_download( | |
filename=queue_file_path, | |
repo_id=QUEUE_REPO, | |
repo_type="space", | |
token=TOKEN | |
) | |
with open(queue_file, "r") as f: | |
queue_data = json.load(f) | |
queue_len = len(queue_data) | |
if queue_len == 0: | |
queue_data = [] | |
elif queue_len >= 1: | |
yield styled_warning("The evaluation queue is full at the moment. Please try again in one hour") | |
return | |
queue_data.append(eval_entry) | |
print("Updating eval queue file") | |
API.upload_file( | |
path_or_fileobj=json.dumps(queue_data, indent=2).encode("utf-8"), | |
path_in_repo=queue_file_path, | |
repo_id=QUEUE_REPO, | |
repo_type="space", | |
commit_message=f"Add {model} to eval queue" | |
) | |
print("Uploading eval file") | |
API.upload_file( | |
path_or_fileobj=out_path, | |
path_in_repo=out_path, | |
repo_id=QUEUE_REPO, | |
repo_type="space", | |
commit_message=f"Add {model} request file", | |
) | |
# Remove the local file | |
os.remove(out_path) | |
yield styled_message( | |
"✅ Good news! Your model has been added to the evaluation queue.<br>If you do not see the results after 3 hours then please let us know by opening a community discussion." | |
) | |
return | |