|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import logging |
|
|
|
import io |
|
from PIL import Image |
|
import numpy as np |
|
|
|
import torch |
|
|
|
from detectron2.data import detection_utils as utils |
|
from detectron2.data import transforms as T |
|
from detectron2.data import MetadataCatalog |
|
|
|
from modeling.language.LangEncoder import build_tokenizer |
|
from modeling.utils import configurable |
|
|
|
|
|
__all__ = ["VLPreDatasetMapper"] |
|
|
|
|
|
def build_transform_gen(cfg, is_train): |
|
""" |
|
Create a list of default :class:`Augmentation` from config. |
|
Now it includes resizing and flipping. |
|
Returns: |
|
list[Augmentation] |
|
""" |
|
|
|
cfg_input = cfg['INPUT'] |
|
image_size = cfg_input['IMAGE_SIZE'] |
|
augmentation = [] |
|
|
|
augmentation.extend([ |
|
T.Resize((image_size, image_size)), |
|
]) |
|
|
|
return augmentation |
|
|
|
|
|
|
|
class VLPreDatasetMapper: |
|
""" |
|
A callable which takes a dataset dict in Detectron2 Dataset format, |
|
and map it into a format used by MaskFormer. |
|
|
|
This dataset mapper applies the same transformation as DETR for COCO panoptic segmentation. |
|
|
|
The callable currently does the following: |
|
|
|
1. Read the image from "file_name" |
|
2. Applies geometric transforms to the image and annotation |
|
3. Find and applies suitable cropping to the image and annotation |
|
4. Prepare image and annotation to Tensors |
|
""" |
|
|
|
@configurable |
|
def __init__( |
|
self, |
|
is_train=True, |
|
dataset_name=None, |
|
*, |
|
tfm_gens, |
|
image_format, |
|
tokenizer=None, |
|
max_token_num=None, |
|
device=None, |
|
): |
|
""" |
|
NOTE: this interface is experimental. |
|
Args: |
|
is_train: for training or inference |
|
augmentations: a list of augmentations or deterministic transforms to apply |
|
crop_gen: crop augmentation |
|
tfm_gens: data augmentation |
|
image_format: an image format supported by :func:`detection_utils.read_image`. |
|
""" |
|
self.tfm_gens = tfm_gens |
|
logging.getLogger(__name__).info( |
|
"[PretrainDatasetMapper] Full TransformGens used in training: {}".format( |
|
str(self.tfm_gens) |
|
) |
|
) |
|
|
|
self.img_format = image_format |
|
self.is_train = is_train |
|
|
|
self.all_arrows = MetadataCatalog.get(dataset_name).arrows |
|
|
|
self.tokenizer = tokenizer |
|
self.max_token_num = max_token_num |
|
self.device = device |
|
|
|
@classmethod |
|
def from_config(cls, cfg, is_train=True, dataset_name=None): |
|
|
|
tfm_gens = build_transform_gen(cfg, is_train) |
|
|
|
tokenizer = build_tokenizer(cfg['MODEL']['TEXT']) |
|
max_token_num = cfg['MODEL']['TEXT']['CONTEXT_LENGTH'] |
|
device = cfg['device'] |
|
|
|
ret = { |
|
"is_train": is_train, |
|
"dataset_name": dataset_name, |
|
"tfm_gens": tfm_gens, |
|
"image_format": cfg['INPUT']['FORMAT'], |
|
"tokenizer": tokenizer, |
|
"max_token_num": max_token_num, |
|
"device": device, |
|
} |
|
return ret |
|
|
|
def get_image(self, inp): |
|
image_bytes = io.BytesIO(inp) |
|
image_bytes.seek(0) |
|
return Image.open(image_bytes) |
|
|
|
def __call__(self, dataset_dict): |
|
""" |
|
Args: |
|
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. |
|
|
|
Returns: |
|
dict: a format that builtin models in detectron2 accept |
|
""" |
|
dataset_dict = copy.deepcopy(dataset_dict) |
|
arr = self.all_arrows[dataset_dict['arr_id']] |
|
cur_id = dataset_dict['cur_id'] |
|
image = self.get_image(arr['image'][cur_id].as_py()) |
|
|
|
image = utils._apply_exif_orientation(image) |
|
image = utils.convert_PIL_to_numpy(image, self.img_format) |
|
utils.check_image_size(dataset_dict, image) |
|
|
|
image, transforms = T.apply_transform_gens(self.tfm_gens, image) |
|
image_shape = image.shape[:2] |
|
|
|
|
|
|
|
|
|
dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1))) |
|
|
|
captions = dataset_dict['captions'] |
|
tokens = self.tokenizer( |
|
captions, padding='max_length', truncation=True, max_length=self.max_token_num, return_tensors='pt' |
|
) |
|
dataset_dict['tokens'] = {"input_ids": tokens["input_ids"], "attention_mask": tokens["attention_mask"]} |
|
return dataset_dict |