SEEM / datasets /dataset_mappers /vlp_dataset_mapper.py
skallewag's picture
Upload 247 files
bdec3d7 verified
# --------------------------------------------------------
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Modified by Xueyan Zou ([email protected])
# --------------------------------------------------------
# Copyright (c) Facebook, Inc. and its affiliates.
import copy
import logging
import io
from PIL import Image
import numpy as np
import torch
from detectron2.data import detection_utils as utils
from detectron2.data import transforms as T
from detectron2.data import MetadataCatalog
from modeling.language.LangEncoder import build_tokenizer
from modeling.utils import configurable
__all__ = ["VLPreDatasetMapper"]
def build_transform_gen(cfg, is_train):
"""
Create a list of default :class:`Augmentation` from config.
Now it includes resizing and flipping.
Returns:
list[Augmentation]
"""
# The scope of vlp dataset may not need any augmentation.
cfg_input = cfg['INPUT']
image_size = cfg_input['IMAGE_SIZE']
augmentation = []
augmentation.extend([
T.Resize((image_size, image_size)),
])
return augmentation
# This is specifically designed for the COCO dataset.
class VLPreDatasetMapper:
"""
A callable which takes a dataset dict in Detectron2 Dataset format,
and map it into a format used by MaskFormer.
This dataset mapper applies the same transformation as DETR for COCO panoptic segmentation.
The callable currently does the following:
1. Read the image from "file_name"
2. Applies geometric transforms to the image and annotation
3. Find and applies suitable cropping to the image and annotation
4. Prepare image and annotation to Tensors
"""
@configurable
def __init__(
self,
is_train=True,
dataset_name=None,
*,
tfm_gens,
image_format,
tokenizer=None,
max_token_num=None,
device=None,
):
"""
NOTE: this interface is experimental.
Args:
is_train: for training or inference
augmentations: a list of augmentations or deterministic transforms to apply
crop_gen: crop augmentation
tfm_gens: data augmentation
image_format: an image format supported by :func:`detection_utils.read_image`.
"""
self.tfm_gens = tfm_gens
logging.getLogger(__name__).info(
"[PretrainDatasetMapper] Full TransformGens used in training: {}".format(
str(self.tfm_gens)
)
)
self.img_format = image_format
self.is_train = is_train
self.all_arrows = MetadataCatalog.get(dataset_name).arrows
self.tokenizer = tokenizer
self.max_token_num = max_token_num
self.device = device
@classmethod
def from_config(cls, cfg, is_train=True, dataset_name=None):
# Build augmentation
tfm_gens = build_transform_gen(cfg, is_train)
tokenizer = build_tokenizer(cfg['MODEL']['TEXT'])
max_token_num = cfg['MODEL']['TEXT']['CONTEXT_LENGTH']
device = cfg['device']
ret = {
"is_train": is_train,
"dataset_name": dataset_name,
"tfm_gens": tfm_gens,
"image_format": cfg['INPUT']['FORMAT'],
"tokenizer": tokenizer,
"max_token_num": max_token_num,
"device": device,
}
return ret
def get_image(self, inp):
image_bytes = io.BytesIO(inp)
image_bytes.seek(0)
return Image.open(image_bytes)
def __call__(self, dataset_dict):
"""
Args:
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format.
Returns:
dict: a format that builtin models in detectron2 accept
"""
dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below
arr = self.all_arrows[dataset_dict['arr_id']]
cur_id = dataset_dict['cur_id']
image = self.get_image(arr['image'][cur_id].as_py())
image = utils._apply_exif_orientation(image)
image = utils.convert_PIL_to_numpy(image, self.img_format)
utils.check_image_size(dataset_dict, image)
image, transforms = T.apply_transform_gens(self.tfm_gens, image)
image_shape = image.shape[:2] # h, w
# Pytorch's dataloader is efficient on torch.Tensor due to shared-memory,
# but not efficient on large generic data structures due to the use of pickle & mp.Queue.
# Therefore it's important to use torch.Tensor.
dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1)))
captions = dataset_dict['captions']
tokens = self.tokenizer(
captions, padding='max_length', truncation=True, max_length=self.max_token_num, return_tensors='pt'
)
dataset_dict['tokens'] = {"input_ids": tokens["input_ids"], "attention_mask": tokens["attention_mask"]}
return dataset_dict