|
import streamlit as st
|
|
import numpy as np
|
|
import joblib
|
|
|
|
|
|
model_path = ("C:\\Users\\KAUSHIK\\OneDrive\\Documents\\lr.pkl")
|
|
scaler_path = ("C:\\Users\\KAUSHIK\\OneDrive\\Documents\\scaler.pkl")
|
|
|
|
lr = joblib.load(model_path)
|
|
scaler = joblib.load(scaler_path)
|
|
|
|
st.title("Diabetes Disease Progression Predictor")
|
|
st.write("Enter the following patient details:")
|
|
|
|
|
|
features = ['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']
|
|
inputs = []
|
|
|
|
for feature in features:
|
|
val = st.number_input(f"{feature}", value=0.0, step=0.01, format="%.2f")
|
|
inputs.append(val)
|
|
|
|
|
|
if st.button("Predict Disease Progression"):
|
|
data = np.array([inputs])
|
|
scaled_data = scaler.transform(data)
|
|
prediction = lr.predict(scaled_data)
|
|
st.success(f"Predicted Disease Progression Score: {prediction[0]:.2f}")
|
|
|