sudhanm's picture
Update app.py
3940c6b verified
raw
history blame
10.9 kB
import gradio as gr
import random
import difflib
import re
import jiwer
import torch
from transformers import WhisperForConditionalGeneration, WhisperProcessor
from indic_transliteration import sanscript
from indic_transliteration.sanscript import transliterate
import spaces
# ---------------- CONFIG ---------------- #
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Updated model configurations for each language
MODEL_CONFIGS = {
"English": "openai/whisper-large-v2",
"Tamil": "vasista22/whisper-tamil-large-v2",
"Malayalam": "thennal/whisper-medium-ml"
}
LANG_CODES = {
"English": "en",
"Tamil": "ta",
"Malayalam": "ml"
}
LANG_PRIMERS = {
"English": ("The transcript should be in English only.",
"Write only in English without translation. Example: This is an English sentence."),
"Tamil": ("நகல் தமிழ் எழுத்துக்களில் மட்டும் இருக்க வேண்டும்.",
"தமிழ் எழுத்துக்களில் மட்டும் எழுதவும், மொழிபெயர்ப்பு செய்யக்கூடாது. உதாரணம்: இது ஒரு தமிழ் வாக்கியம்."),
"Malayalam": ("ട്രാൻസ്ഖ്രിപ്റ്റ് മലയാള ലിപിയിൽ ആയിരിക്കണം.",
"മലയാള ലിപിയിൽ മാത്രം എഴുതുക, വിവർത്തനം ചെയ്യരുത്. ഉദാഹരണം: ഇതൊരു മലയാള വാക്യമാണ്. എനിക്ക് മലയാളം അറിയാം.")
}
SCRIPT_PATTERNS = {
"Tamil": re.compile(r"[஀-௿]"),
"Malayalam": re.compile(r"[ഀ-ൿ]"),
"English": re.compile(r"[A-Za-z]")
}
SENTENCE_BANK = {
"English": [
"The sun sets over the horizon.",
"Learning languages is fun.",
"I like to drink coffee in the morning.",
"Technology helps us communicate better.",
"Reading books expands our knowledge."
],
"Tamil": [
"இன்று நல்ல வானிலை உள்ளது.",
"நான் தமிழ் கற்றுக்கொண்டு இருக்கிறேன்.",
"எனக்கு புத்தகம் படிக்க விருப்பம்.",
"தமிழ் மொழி மிகவும் அழகானது.",
"நான் தினமும் பள்ளிக்கு செல்கிறேன்."
],
"Malayalam": [
"എനിക്ക് മലയാളം വളരെ ഇഷ്ടമാണ്.",
"ഇന്ന് മഴപെയ്യുന്നു.",
"ഞാൻ പുസ്തകം വായിക്കുന്നു.",
"കേരളം എന്റെ സ്വന്തം നാടാണ്.",
"ഞാൻ മലയാളം പഠിക്കുന്നു."
]
}
# Global variables for models (will be loaded lazily)
whisper_models = {}
whisper_processors = {}
def load_model(language_choice):
"""Load model for specific language if not already loaded"""
if language_choice not in whisper_models:
model_id = MODEL_CONFIGS[language_choice]
print(f"Loading {language_choice} model: {model_id}")
whisper_models[language_choice] = WhisperForConditionalGeneration.from_pretrained(model_id).to(DEVICE)
whisper_processors[language_choice] = WhisperProcessor.from_pretrained(model_id)
print(f"{language_choice} model loaded successfully!")
# ---------------- HELPERS ---------------- #
def get_random_sentence(language_choice):
return random.choice(SENTENCE_BANK[language_choice])
def is_script(text, lang_name):
pattern = SCRIPT_PATTERNS.get(lang_name)
return bool(pattern.search(text)) if pattern else True
def transliterate_to_hk(text, lang_choice):
mapping = {
"Tamil": sanscript.TAMIL,
"Malayalam": sanscript.MALAYALAM,
"English": None
}
return transliterate(text, mapping[lang_choice], sanscript.HK) if mapping[lang_choice] else text
@spaces.GPU
def transcribe_once(audio_path, language_choice, initial_prompt, beam_size, temperature, condition_on_previous_text):
# Load model if not already loaded
load_model(language_choice)
# Get the appropriate model and processor for the language
model = whisper_models[language_choice]
processor = whisper_processors[language_choice]
lang_code = LANG_CODES[language_choice]
# Load and process audio
import librosa
audio, sr = librosa.load(audio_path, sr=16000)
# Process audio with the specific model's processor
input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features.to(DEVICE)
# Generate forced decoder ids for the language
forced_decoder_ids = processor.get_decoder_prompt_ids(language=lang_code, task="transcribe")
# Generate transcription
with torch.no_grad():
predicted_ids = model.generate(
input_features,
forced_decoder_ids=forced_decoder_ids,
max_length=448,
num_beams=beam_size,
temperature=temperature if temperature > 0 else None,
do_sample=temperature > 0,
)
# Decode the transcription
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
return transcription.strip()
def highlight_differences(ref, hyp):
ref_words, hyp_words = ref.strip().split(), hyp.strip().split()
sm = difflib.SequenceMatcher(None, ref_words, hyp_words)
out_html = []
for tag, i1, i2, j1, j2 in sm.get_opcodes():
if tag == 'equal':
out_html.extend([f"<span style='color:green'>{w}</span>" for w in ref_words[i1:i2]])
elif tag == 'replace':
out_html.extend([f"<span style='color:red'>{w}</span>" for w in ref_words[i1:i2]])
out_html.extend([f"<span style='color:orange'>{w}</span>" for w in hyp_words[j1:j2]])
elif tag == 'delete':
out_html.extend([f"<span style='color:red;text-decoration:line-through'>{w}</span>" for w in ref_words[i1:i2]])
elif tag == 'insert':
out_html.extend([f"<span style='color:orange'>{w}</span>" for w in hyp_words[j1:j2]])
return " ".join(out_html)
def char_level_highlight(ref, hyp):
sm = difflib.SequenceMatcher(None, list(ref), list(hyp))
out = []
for tag, i1, i2, j1, j2 in sm.get_opcodes():
if tag == 'equal':
out.extend([f"<span style='color:green'>{c}</span>" for c in ref[i1:i2]])
elif tag in ('replace', 'delete'):
out.extend([f"<span style='color:red;text-decoration:underline'>{c}</span>" for c in ref[i1:i2]])
elif tag == 'insert':
out.extend([f"<span style='color:orange'>{c}</span>" for c in hyp[j1:j2]])
return "".join(out)
# ---------------- MAIN ---------------- #
@spaces.GPU
def compare_pronunciation(audio, language_choice, intended_sentence,
pass1_beam, pass1_temp, pass1_condition):
if audio is None or not intended_sentence.strip():
return ("No audio or intended sentence.", "", "", "", "", "", "", "")
primer_weak, primer_strong = LANG_PRIMERS[language_choice]
# Pass 1: raw transcription with user-configured decoding parameters
actual_text = transcribe_once(audio, language_choice, primer_weak,
pass1_beam, pass1_temp, pass1_condition)
# Pass 2: strict transcription biased by intended sentence (fixed decoding params)
strict_prompt = f"{primer_strong}\nTarget: {intended_sentence}"
corrected_text = transcribe_once(audio, language_choice, strict_prompt,
beam_size=5, temperature=0.0, condition_on_previous_text=False)
# Compute WER and CER
wer_val = jiwer.wer(intended_sentence, actual_text)
cer_val = jiwer.cer(intended_sentence, actual_text)
# Transliteration of Pass 1 output
hk_translit = transliterate_to_hk(actual_text, language_choice) if is_script(actual_text, language_choice) else f"[Script mismatch: expected {language_choice}]"
# Highlight word-level and character-level differences
diff_html = highlight_differences(intended_sentence, actual_text)
char_html = char_level_highlight(intended_sentence, actual_text)
return (actual_text, corrected_text, hk_translit, f"{wer_val:.2f}", f"{cer_val:.2f}",
diff_html, char_html, intended_sentence)
# ---------------- UI ---------------- #
with gr.Blocks(title="Pronunciation Comparator") as demo:
gr.Markdown("## 🎙 Pronunciation Comparator - English, Tamil & Malayalam")
gr.Markdown("Practice pronunciation with specialized Whisper models for each language!")
with gr.Row():
lang_choice = gr.Dropdown(choices=list(LANG_CODES.keys()), value="Malayalam", label="Language")
gen_btn = gr.Button("🎲 Generate Sentence")
intended_display = gr.Textbox(label="Generated Sentence (Read aloud)", interactive=False)
with gr.Row():
audio_input = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Record your pronunciation")
with gr.Column():
gr.Markdown("### Transcription Parameters")
pass1_beam = gr.Slider(1, 10, value=8, step=1, label="Pass 1 Beam Size")
pass1_temp = gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="Pass 1 Temperature")
pass1_condition = gr.Checkbox(value=True, label="Pass 1: Condition on previous text")
submit_btn = gr.Button("🔍 Analyze Pronunciation", variant="primary")
with gr.Row():
pass1_out = gr.Textbox(label="Pass 1: What You Actually Said")
pass2_out = gr.Textbox(label="Pass 2: Target-Biased Output")
with gr.Row():
hk_out = gr.Textbox(label="Harvard-Kyoto Transliteration (Pass 1)")
wer_out = gr.Textbox(label="Word Error Rate")
cer_out = gr.Textbox(label="Character Error Rate")
gr.Markdown("### Visual Feedback")
diff_html_box = gr.HTML(label="Word Differences Highlighted")
char_html_box = gr.HTML(label="Character-Level Highlighting (mispronounced = red underline)")
# Event handlers
gen_btn.click(fn=get_random_sentence, inputs=[lang_choice], outputs=[intended_display])
submit_btn.click(
fn=compare_pronunciation,
inputs=[audio_input, lang_choice, intended_display, pass1_beam, pass1_temp, pass1_condition],
outputs=[
pass1_out, pass2_out, hk_out, wer_out, cer_out,
diff_html_box, char_html_box, intended_display
]
)
if __name__ == "__main__":
demo.launch()