File size: 5,724 Bytes
1c7a288
e6bfac3
 
 
24ba781
 
e6bfac3
 
 
 
 
 
 
24ba781
e6bfac3
6648f74
e6bfac3
24ba781
 
6648f74
 
 
e6bfac3
 
 
 
 
 
 
 
6648f74
e6bfac3
 
 
 
6648f74
 
24ba781
e6bfac3
3acced2
e6bfac3
 
351c135
e6bfac3
 
24ba781
e6bfac3
24ba781
e6bfac3
 
 
24ba781
e6bfac3
 
24ba781
e6bfac3
 
 
 
 
 
3acced2
e6bfac3
 
3acced2
e6bfac3
 
 
 
 
 
3acced2
e6bfac3
 
3acced2
 
 
 
e6bfac3
 
3acced2
e6bfac3
 
 
 
6648f74
e6bfac3
6648f74
e6bfac3
 
 
 
 
24ba781
6648f74
e6bfac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24ba781
e6bfac3
 
24ba781
e6bfac3
 
 
24ba781
e6bfac3
 
 
 
351c135
e6bfac3
 
245f6f3
e6bfac3
 
 
 
 
 
 
 
 
 
 
 
 
 
6648f74
e6bfac3
 
 
 
 
 
 
 
 
 
 
 
24ba781
e6bfac3
 
 
24ba781
e6bfac3
 
 
 
 
 
114e659
 
24ba781
e6bfac3
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import streamlit as st
import os
import tempfile
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.chat_models import ChatOllama
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
import base64

# Set page config
st.set_page_config(
    page_title="EduQuery - Smart PDF Assistant",
    page_icon="πŸ“š",
    layout="wide",
    initial_sidebar_state="collapsed"
)

# Custom CSS for colorful UI
def local_css(file_name):
    with open(file_name) as f:
        st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)

local_css("style.css")

# Header with gradient
st.markdown("""
<div class="header">
    <h1>πŸ“š EduQuery</h1>
    <p>Smart PDF Assistant for Students</p>
</div>
""", unsafe_allow_html=True)

# Initialize session state
if "vector_store" not in st.session_state:
    st.session_state.vector_store = None
if "messages" not in st.session_state:
    st.session_state.messages = []

# Model selection
MODEL_NAME = "nous-hermes2"  # Best open-source model for instruction following

# PDF Processing
def process_pdf(pdf_file):
    with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
        tmp_file.write(pdf_file.getvalue())
        tmp_path = tmp_file.name
    
    loader = PyPDFLoader(tmp_path)
    docs = loader.load()
    
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len
    )
    chunks = text_splitter.split_documents(docs)
    
    embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-base-en-v1.5")
    vector_store = FAISS.from_documents(chunks, embeddings)
    
    os.unlink(tmp_path)
    return vector_store

# RAG Setup
def setup_qa_chain(vector_store):
    llm = ChatOllama(model=MODEL_NAME, temperature=0.3)
    
    custom_prompt = """
    You are an expert academic assistant. Answer the question based only on the following context:
    {context}
    
    Question: {question}
    
    Provide a clear, concise answer with page number references. If unsure, say "I couldn't find this information in the document".
    """
    
    prompt = PromptTemplate(
        template=custom_prompt,
        input_variables=["context", "question"]
    )
    
    retriever = vector_store.as_retriever(search_kwargs={"k": 3})
    
    qa_chain = (
        {"context": retriever, "question": RunnablePassthrough()}
        | prompt
        | llm
        | StrOutputParser()
    )
    
    return qa_chain

# Generate questions from chapter
def generate_chapter_questions(vector_store, chapter_title):
    llm = ChatOllama(model=MODEL_NAME, temperature=0.7)
    
    prompt = PromptTemplate(
        input_variables=["chapter_title"],
        template="""
        You are an expert educator. Generate 5 important questions and answers about '{chapter_title}' 
        that would help students understand key concepts. Format as:
        
        Q1: [Question]
        A1: [Answer with page reference]
        
        Q2: [Question]
        A2: [Answer with page reference]
        ..."""
    )
    
    chain = prompt | llm | StrOutputParser()
    return chain.invoke({"chapter_title": chapter_title})

# File upload section
st.subheader("πŸ“€ Upload Your Textbook/Notes")
uploaded_file = st.file_uploader("", type="pdf", accept_multiple_files=False)

if uploaded_file:
    with st.spinner("Processing PDF..."):
        st.session_state.vector_store = process_pdf(uploaded_file)
    st.success("PDF processed successfully! You can now ask questions.")

# Main content columns
col1, col2 = st.columns([1, 2])

# Chapter-based Q&A Generator
with col1:
    st.subheader("πŸ” Generate Chapter Questions")
    chapter_title = st.text_input("Enter chapter title/section name:")
    
    if st.button("Generate Q&A") and chapter_title and st.session_state.vector_store:
        with st.spinner(f"Generating questions about {chapter_title}..."):
            questions = generate_chapter_questions(
                st.session_state.vector_store, 
                chapter_title
            )
            st.markdown(f"<div class='qa-box'>{questions}</div>", unsafe_allow_html=True)
    elif chapter_title and not st.session_state.vector_store:
        st.warning("Please upload a PDF first")

# Chat interface
with col2:
    st.subheader("πŸ’¬ Ask Anything About the Document")
    
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])
    
    if prompt := st.chat_input("Your question..."):
        if not st.session_state.vector_store:
            st.warning("Please upload a PDF first")
            st.stop()
            
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("user"):
            st.markdown(prompt)
            
        with st.chat_message("assistant"):
            with st.spinner("Thinking..."):
                qa_chain = setup_qa_chain(st.session_state.vector_store)
                response = qa_chain.invoke(prompt)
            st.markdown(response)
            st.session_state.messages.append({"role": "assistant", "content": response})

# Footer
st.markdown("---")
st.markdown(
    """
    <div class="footer">
        <p>EduQuery - Helping students learn smarter β€’ Powered by Nous-Hermes2 and LangChain</p>
    </div>
    """,
    unsafe_allow_html=True
)