Spaces:
Sleeping
Sleeping
File size: 8,162 Bytes
1c7a288 6c9740a e6bfac3 24ba781 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a 6648f74 ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a 66d14e0 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 66d14e0 6c9740a ba3ef77 6c9740a ba3ef77 e6bfac3 6c9740a ba3ef77 24ba781 66d14e0 6c9740a ba3ef77 6c9740a 24ba781 ba3ef77 6c9740a 66d14e0 6c9740a ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 66d14e0 ba3ef77 66d14e0 ba3ef77 6c9740a ba3ef77 6c9740a ba3ef77 66d14e0 ba3ef77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import streamlit as st
import os
import tempfile
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceHub
import base64
# Set page config with light purple theme
st.set_page_config(
page_title="EduQuery - Smart PDF Assistant",
page_icon="π",
layout="wide",
initial_sidebar_state="collapsed"
)
# Embedded CSS for light purple UI
st.markdown("""
<style>
:root {
--primary: #8a4fff;
--secondary: #d0bcff;
--light: #f3edff;
--dark: #4a2b80;
}
body {
background-color: #f8f5ff;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.stApp {
max-width: 1200px;
margin: 0 auto;
padding: 2rem;
}
.header {
background: linear-gradient(135deg, var(--primary) 0%, var(--dark) 100%);
color: white;
padding: 2rem;
border-radius: 15px;
margin-bottom: 2rem;
text-align: center;
box-shadow: 0 4px 20px rgba(138, 79, 255, 0.2);
}
.header h1 {
font-size: 2.8rem;
margin-bottom: 0.5rem;
}
.stButton>button {
background: linear-gradient(135deg, var(--primary) 0%, var(--dark) 100%);
color: white;
border: none;
border-radius: 25px;
padding: 0.75rem 2rem;
font-weight: bold;
font-size: 1rem;
transition: all 0.3s ease;
margin-top: 1rem;
}
.stButton>button:hover {
transform: scale(1.05);
box-shadow: 0 5px 15px rgba(138, 79, 255, 0.3);
}
.stTextInput>div>div>input {
border-radius: 25px;
padding: 0.9rem 1.5rem;
border: 1px solid var(--secondary);
background-color: var(--light);
}
.stTextInput>div>div>input:focus {
border-color: var(--primary);
box-shadow: 0 0 0 2px rgba(138, 79, 255, 0.2);
}
.stChatMessage {
padding: 1.5rem;
border-radius: 20px;
margin-bottom: 1rem;
max-width: 80%;
box-shadow: 0 4px 12px rgba(0,0,0,0.05);
}
.stChatMessage[data-testid="user"] {
background: linear-gradient(135deg, #d0bcff 0%, #b8a1ff 100%);
margin-left: auto;
color: #4a2b80;
}
.stChatMessage[data-testid="assistant"] {
background: linear-gradient(135deg, #e6dcff 0%, #f3edff 100%);
margin-right: auto;
color: #4a2b80;
border: 1px solid var(--secondary);
}
.upload-area {
background: linear-gradient(135deg, #f3edff 0%, #e6dcff 100%);
padding: 2rem;
border-radius: 15px;
text-align: center;
border: 2px dashed var(--primary);
margin-bottom: 2rem;
}
.chat-area {
background: white;
padding: 2rem;
border-radius: 15px;
box-shadow: 0 4px 20px rgba(138, 79, 255, 0.1);
height: 500px;
overflow-y: auto;
}
.footer {
text-align: center;
color: #8a4fff;
padding-top: 2rem;
font-size: 0.9rem;
margin-top: 2rem;
border-top: 1px solid var(--secondary);
}
.spinner {
color: var(--primary) !important;
}
.stSpinner > div > div {
border-top-color: var(--primary) !important;
}
.token-input {
background: var(--light);
padding: 1rem;
border-radius: 15px;
margin-bottom: 1rem;
}
</style>
""", unsafe_allow_html=True)
# Header with gradient
st.markdown("""
<div class="header">
<h1>π EduQuery</h1>
<p>Smart PDF Assistant for Students</p>
</div>
""", unsafe_allow_html=True)
# Initialize session state
if "vector_store" not in st.session_state:
st.session_state.vector_store = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "qa_chain" not in st.session_state:
st.session_state.qa_chain = None
# PDF Processing
def process_pdf(pdf_file):
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
tmp_file.write(pdf_file.getvalue())
tmp_path = tmp_file.name
loader = PyPDFLoader(tmp_path)
pages = loader.load_and_split()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=800,
chunk_overlap=150
)
chunks = text_splitter.split_documents(pages)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vector_store = FAISS.from_documents(chunks, embeddings)
os.unlink(tmp_path)
return vector_store
# Setup QA Chain
def setup_qa_chain(vector_store, hf_token=None):
# Use free open-source model that doesn't require authentication
repo_id = "google/flan-t5-xxl" # Free model that doesn't require token
try:
if hf_token:
llm = HuggingFaceHub(
repo_id=repo_id,
huggingfacehub_api_token=hf_token,
model_kwargs={"temperature": 0.5, "max_new_tokens": 500}
)
else:
# Try without token (works for some open models)
llm = HuggingFaceHub(
repo_id=repo_id,
model_kwargs={"temperature": 0.5, "max_new_tokens": 500}
)
except Exception as e:
st.error(f"Error loading model: {str(e)}")
return None
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True
)
qa_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vector_store.as_retriever(search_kwargs={"k": 3}),
memory=memory,
chain_type="stuff"
)
return qa_chain
# Hugging Face Token Input
st.markdown("""
<div class="token-input">
<h3>π Hugging Face Token (Optional)</h3>
<p>For better models like Mistral, enter your <a href="https://huggingface.co/settings/tokens" target="_blank">Hugging Face token</a></p>
""", unsafe_allow_html=True)
hf_token = st.text_input("", type="password", label_visibility="collapsed", placeholder="hf_xxxxxxxxxxxxxxxxxx")
st.markdown("</div>", unsafe_allow_html=True)
# File upload section
st.markdown("""
<div class="upload-area">
<h3>π€ Upload Your Textbook/Notes</h3>
""", unsafe_allow_html=True)
uploaded_file = st.file_uploader("", type="pdf", accept_multiple_files=False, label_visibility="collapsed")
st.markdown("</div>", unsafe_allow_html=True)
if uploaded_file:
with st.spinner("Processing PDF..."):
st.session_state.vector_store = process_pdf(uploaded_file)
st.session_state.qa_chain = setup_qa_chain(st.session_state.vector_store, hf_token)
if st.session_state.qa_chain:
st.success("PDF processed successfully! You can now ask questions.")
# Chat interface
st.markdown("""
<div class="chat-area">
<h3>π¬ Ask Anything About the Document</h3>
""", unsafe_allow_html=True)
# Display chat history
for message in st.session_state.chat_history:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# User input
if prompt := st.chat_input("Your question..."):
if not st.session_state.vector_store:
st.warning("Please upload a PDF first")
st.stop()
if not st.session_state.qa_chain:
st.error("Model not initialized. Please check your Hugging Face token or try again.")
st.stop()
# Add user message to chat history
st.session_state.chat_history.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
# Get assistant response
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
try:
response = st.session_state.qa_chain({"question": prompt})
answer = response["answer"]
except Exception as e:
answer = f"Error: {str(e)}"
st.markdown(answer)
# Add assistant response to chat history
st.session_state.chat_history.append({"role": "assistant", "content": answer})
st.markdown("</div>", unsafe_allow_html=True)
# Footer
st.markdown("""
<div class="footer">
<p>EduQuery - Helping students learn smarter β’ Powered by Flan-T5 and LangChain</p>
</div>
""", unsafe_allow_html=True) |