File size: 5,569 Bytes
abcd1c5
 
b9e53b5
963bae3
b9e53b5
 
0d611dd
b9e53b5
 
0d611dd
 
 
876dc5b
7d698a4
 
876dc5b
7d698a4
abcd1c5
709baf9
 
0d611dd
 
709baf9
 
 
 
876dc5b
963bae3
0d611dd
963bae3
 
0d611dd
 
 
963bae3
 
0d611dd
963bae3
 
c0b6a44
963bae3
 
 
 
 
 
620cf0a
cfff5f8
963bae3
b9e53b5
 
620cf0a
b9e53b5
abcd1c5
876dc5b
b9e53b5
 
 
 
0d611dd
 
b9e53b5
 
abcd1c5
7d698a4
0d611dd
 
 
 
 
 
 
 
 
 
 
 
876dc5b
b9e53b5
 
 
 
 
 
 
0d611dd
b9e53b5
 
 
cfff5f8
876dc5b
b9e53b5
709baf9
 
7d698a4
709baf9
c0b6a44
b9e53b5
 
 
c0b6a44
b9e53b5
0d611dd
709baf9
b9e53b5
709baf9
0d611dd
b9e53b5
c0b6a44
b9e53b5
 
 
709baf9
b9e53b5
7d698a4
b9e53b5
0d611dd
b9e53b5
cfff5f8
876dc5b
b9e53b5
876dc5b
c0b6a44
0d611dd
876dc5b
 
 
 
 
709baf9
0d611dd
7d698a4
0d611dd
 
7d698a4
709baf9
0d611dd
 
7d698a4
0d611dd
7d698a4
 
709baf9
876dc5b
709baf9
7d698a4
0d611dd
7d698a4
876dc5b
7d698a4
709baf9
 
b9e53b5
 
0d611dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import streamlit as st
from PIL import Image
import torch
import torch.nn as nn
from torchvision import transforms
import os
from dotenv import load_dotenv
from groq import Groq

# Load environment variables
load_dotenv()

# Page settings
st.set_page_config(page_title="🌿 Leaf Disease Detector", layout="wide")
st.markdown("<h1 style='text-align: center;'>🌿 Plant Leaf Disease Detection</h1>", unsafe_allow_html=True)
st.markdown("<p style='text-align: center;'>Upload a leaf image to detect plant diseases and get treatment guidance.</p>", unsafe_allow_html=True)
st.markdown("---")

# Initialize Groq client
try:
    api_key = os.getenv("GROQ_API_KEY")
    client = Groq(api_key=api_key)
except Exception as e:
    st.error(f"Failed to initialize Groq client: {str(e)}")
    client = None

# Dummy CNN model
class PlantDiseaseModel(nn.Module):
    def __init__(self, num_classes=28):
        super(PlantDiseaseModel, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 32, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2, 2),
            nn.Conv2d(32, 64, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2, 2),
            nn.Conv2d(64, 128, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2, 2),
        )
        self.classifier = nn.Sequential(
            nn.Linear(128 * 32 * 32, 512), nn.ReLU(), nn.Dropout(0.5),
            nn.Linear(512, num_classes)
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x

@st.cache_resource
def load_model():
    model = PlantDiseaseModel()
    model.eval()
    return model

model = load_model()

# Preprocessing
def preprocess_image(image):
    transform = transforms.Compose([
        transforms.Resize((256, 256)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406],
                             [0.229, 0.224, 0.225]),
    ])
    return transform(image).unsqueeze(0)

# Disease classes
disease_classes = [
    "Healthy", "Apple Scab", "Apple Black Rot", "Apple Cedar Rust", 
    "Cherry Powdery Mildew", "Corn Gray Leaf Spot", "Corn Common Rust", 
    "Grape Black Rot", "Grape Esca", "Grape Leaf Blight", 
    "Orange Huanglongbing", "Peach Bacterial Spot", "Pepper Bacterial Spot", 
    "Potato Early Blight", "Potato Late Blight", "Raspberry Healthy", 
    "Soybean Healthy", "Squash Powdery Mildew", "Strawberry Leaf Scorch", 
    "Tomato Bacterial Spot", "Tomato Early Blight", "Tomato Late Blight", 
    "Tomato Leaf Mold", "Tomato Septoria Leaf Spot", "Tomato Spider Mites", 
    "Tomato Target Spot", "Tomato Yellow Leaf Curl Virus", "Tomato Mosaic Virus"
]

# Predict class
def classify_disease(image):
    try:
        img_tensor = preprocess_image(image)
        with torch.no_grad():
            outputs = model(img_tensor)
        _, predicted = torch.max(outputs, 1)
        class_idx = predicted.item()
        return disease_classes[class_idx % len(disease_classes)]
    except Exception as e:
        st.error(f"Error during classification: {str(e)}")
        return "Unknown"

# Fetch disease info
def get_disease_info(disease_name):
    if not client:
        return {
            "description": "API not available. Check GROQ_API_KEY.",
        }

    try:
        if disease_name.lower() == "healthy":
            return {
                "description": "The plant appears to be healthy. No treatment is needed.",
            }

        response = client.chat.completions.create(
            messages=[
                {"role": "system", "content": "You are a plant pathologist assistant."},
                {"role": "user", "content": f"Describe {disease_name} in plants including symptoms, treatment, and prevention."}
            ],
            model="llama-3.3-70b-versatile",
            temperature=0.3,
            max_tokens=1024
        )
        return {"description": response.choices[0].message.content}
    except Exception as e:
        st.error(f"Error fetching disease info: {str(e)}")
        return {
            "description": "Unable to fetch disease info. Please try again later.",
        }

# Main app
def main():
    uploaded_file = st.file_uploader("πŸ“· Upload a leaf image", type=["jpeg", "png", "jpg"])

    if uploaded_file:
        filename = uploaded_file.name.lower()
        if not (filename.endswith(".jpg") or filename.endswith(".jpeg") or filename.endswith(".png")):
            st.error("Only JPG, JPEG, and PNG files are allowed.")
            st.stop()

        try:
            image = Image.open(uploaded_file).convert("RGB")
            st.image(image, caption="Uploaded Leaf Image", width=400)

            if st.button("πŸ” Predict Disease"):
                with st.spinner("Analyzing..."):
                    disease_name = classify_disease(image)
                    info = get_disease_info(disease_name)

                    st.markdown("---")
                    st.subheader("πŸ”¬ Prediction Results")

                    col1, col2 = st.columns([1, 2])
                    with col1:
                        status = "βœ… Healthy" if disease_name.lower() == "healthy" else "⚠️ Diseased"
                        st.markdown(f"**Status:** {status}")
                        st.markdown(f"**Detected Disease:** `{disease_name}`")

                    with col2:
                        st.markdown("**πŸ“‹ Disease Info:**")
                        st.markdown(info["description"])
        except Exception as e:
            st.error(f"Error processing image: {str(e)}")

if __name__ == "__main__":
    main()