File size: 11,896 Bytes
adbcd02
d5e9128
adbcd02
 
d5e9128
adbcd02
 
 
d5e9128
adbcd02
 
 
15cc0b8
adbcd02
 
 
 
 
 
5db08b2
 
 
d5e9128
 
 
055d3f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adbcd02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
055d3f9
 
 
 
 
 
 
 
 
 
 
d5e9128
 
adbcd02
 
 
055d3f9
 
 
 
933cfc3
adbcd02
 
055d3f9
adbcd02
055d3f9
adbcd02
 
696927b
adbcd02
 
 
 
 
 
 
 
 
 
 
 
 
055d3f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adbcd02
 
1dbfe33
 
a685af7
1dbfe33
 
 
 
 
 
 
055d3f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dbfe33
adbcd02
a685af7
adbcd02
 
 
 
 
 
 
 
4a798b5
adbcd02
 
 
 
 
 
 
 
 
 
e32d749
adbcd02
 
 
 
4a798b5
adbcd02
 
 
055d3f9
adbcd02
 
 
 
 
 
055d3f9
adbcd02
 
e32d749
055d3f9
 
 
 
 
 
adbcd02
 
 
696927b
adbcd02
 
1dbfe33
f31ff03
e32d749
 
e2dc69f
adbcd02
 
 
 
04d91b0
adbcd02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7735b0
 
 
 
 
 
 
 
 
adbcd02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
"""LangGraph Agent"""

import os
from dotenv import load_dotenv

from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode

from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_tavily import TavilySearch
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic

from supabase.client import Client, create_client


import re
from langchain_community.document_loaders import WikipediaLoader
from langchain_core.tools import tool


from langchain_core.tools import tool
from youtube_transcript_api import YouTubeTranscriptApi, TranscriptsDisabled, NoTranscriptFound

from langchain_core.tools import tool
from transformers import pipeline


import sys

# Before invoking your graph:
sys.setrecursionlimit(100)  # Increase from default 25

load_dotenv()

@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers.



    Args:

        a: first int

        b: second int

    """
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two numbers.

    

    Args:

        a: first int

        b: second int

    """
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract two numbers.

    

    Args:

        a: first int

        b: second int

    """
    return a - b

@tool
def divide(a: int, b: int) -> int:
    """Divide two numbers.

    

    Args:

        a: first int

        b: second int

    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus of two numbers.

    

    Args:

        a: first int

        b: second int

    """
    return a % b

@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query and return maximum 2 results.

    

    Args:

        query: The search query."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"wiki_results": formatted_search_docs}
    


@tool
def web_search(query: str) -> str:
    """Search Tavily for a query and return maximum 3 results.

    

    Args:

        query: The search query."""
    search_docs = TavilySearch(max_results=3).invoke(query=query)
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"web_results": formatted_search_docs}


@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for a query and return maximum 3 result.

    

    Args:

        query: The search query."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in search_docs
        ])
    return {"arvix_results": formatted_search_docs}
    
    
@tool
def filtered_wiki_search(query: str, start_year: int = None, end_year: int = None) -> dict:
    """Search Wikipedia for a query and filter results by year if provided."""
    search_docs = WikipediaLoader(query=query, load_max_docs=5).load()
    
    def contains_year(text, start, end):
        years = re.findall(r'\b(19\d{2}|20\d{2})\b', text)
        for y in years:
            y_int = int(y)
            if start <= y_int <= end:
                return True
        return False

    filtered_docs = []
    for doc in search_docs:
        if start_year and end_year:
            if contains_year(doc.page_content, start_year, end_year):
                filtered_docs.append(doc)
        else:
            filtered_docs.append(doc)

    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in filtered_docs
        ])
    return {"wiki_results": formatted_search_docs}



@tool
def wolfram_alpha_query(query: str) -> str:
    """Query Wolfram Alpha with the given question and return the result."""
    import wolframalpha
    client = wolframalpha.Client(os.environ['WOLFRAM_APP_ID'])
    res = client.query(query)
    try:
        return next(res.results).text
    except StopIteration:
        return "No result found."
        



@tool
def youtube_transcript(url: str) -> str:
    """Fetch YouTube transcript text from a video URL."""
    try:
        video_id = url.split("v=")[-1].split("&")[0]
        transcript_list = YouTubeTranscriptApi.get_transcript(video_id)
        transcript = " ".join([segment['text'] for segment in transcript_list])
        return transcript
    except (TranscriptsDisabled, NoTranscriptFound):
        return "Transcript not available for this video."
    except Exception as e:
        return f"Error fetching transcript: {str(e)}"





translator = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")

@tool
def translate_to_english(text: str) -> str:
    """Translate input text in any language to English."""
    try:
        # HuggingFace translation expects a list of strings
        translated = translator(text, max_length=512)
        return translated[0]['translation_text']
    except Exception as e:
        return f"Translation error: {str(e)}"



from langchain_core.tools import tool
import sympy

@tool
def solve_algebraic_expression(expression: str) -> str:
    """Solve or simplify the given algebraic expression."""
    try:
        expr = sympy.sympify(expression)
        simplified = sympy.simplify(expr)
        return str(simplified)
    except Exception as e:
        return f"Error solving expression: {str(e)}"


from langchain_core.tools import tool

@tool
def run_python_code(code: str) -> str:
    """Execute python code and return the result of variable 'result' if defined."""
    try:
        local_vars = {}
        exec(code, {}, local_vars)
        if 'result' in local_vars:
            return str(local_vars['result'])
        else:
            return "Code executed successfully but no 'result' variable found."
    except Exception as e:
        return f"Error executing code: {str(e)}"
        
        
from langchain_core.tools import tool
import requests

@tool
def wikidata_query(sparql_query: str) -> str:
    """Run a SPARQL query against Wikidata and return the JSON results."""
    endpoint = "https://query.wikidata.org/sparql"
    headers = {"Accept": "application/sparql-results+json"}
    try:
        response = requests.get(endpoint, params={"query": sparql_query}, headers=headers)
        response.raise_for_status()
        data = response.json()
        return str(data)  # Or format as needed
    except Exception as e:
        return f"Error querying Wikidata: {str(e)}"




# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()

# System message
sys_msg = SystemMessage(content=system_prompt)

# build a retriever

embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") #  dim=768
supabase: Client = create_client(
    os.environ.get("SUPABASE_URL"), 
    os.environ.get("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
    client=supabase,
    embedding= embeddings,
    table_name="documents",
    query_name="match_documents_langchain",
)
retriever_tool = create_retriever_tool(
    retriever=vector_store.as_retriever(),
    name="Question Search",
    description="A tool to retrieve similar questions from a vector store.",
)



tools = [
  
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wiki_search,
    filtered_wiki_search,
    web_search,
    arvix_search,
    wolfram_alpha_query,
    retriever_tool,
    youtube_transcript,
    translate_to_english,
    solve_algebraic_expression,
    run_python_code,
    wikidata_query
]

# Build graph function
def build_graph(provider: str = "groq"):
    """Build the graph"""
    # Load environment variables from .env file
    if provider == "openai":
        llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
    elif provider == "anthropic":
        llm = ChatAnthropic(model="claude-v1", temperature=0)
    elif provider == "google":
        # Google Gemini
        llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
    elif provider == "groq":
        # Groq https://console.groq.com/docs/models
        llm = ChatGroq(model="gemma2-9b-it", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
    elif provider == "huggingface":
        # TODO: Add huggingface endpoint
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
                temperature=0,
            ),
        )
    else:
        raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
    # Bind tools to LLM
    llm_with_tools = llm.bind_tools(tools)

    # Node
    def assistant(state: MessagesState):
        """Assistant node"""
        return {"messages": [llm_with_tools.invoke(state["messages"])]}
    
    def retriever(state: MessagesState):
        """Retriever node"""
        similar_question = vector_store.similarity_search(state["messages"][0].content)
        if not similar_question:
            # No similar documents found, fallback message
            example_msg = HumanMessage(
                content="Sorry, I could not find any similar questions in the vector store."
            )
        else:
            example_msg = HumanMessage(
                content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
            )
        return {"messages": [sys_msg] + state["messages"] + [example_msg]}

    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    builder.add_edge(START, "retriever")
    builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges(
        "assistant",
        tools_condition,
    )
    builder.add_edge("tools", "assistant")

    # Compile graph
    return builder.compile()

# test
if __name__ == "__main__":
    question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
    # Build the graph
    graph = build_graph(provider="groq")
    # Run the graph
    messages = [HumanMessage(content=question)]
    messages = graph.invoke({"messages": messages})
    for m in messages["messages"]:
        m.pretty_print()