Spaces:
Sleeping
Sleeping
File size: 28,679 Bytes
10e9b7d eccf8e4 7d65c66 620f572 3c4371f c275bbd 3164d5a 430ca10 3164d5a 7067f57 430ca10 3164d5a e80aab9 3db6293 e80aab9 3164d5a 8b49454 430ca10 61401c1 c5b02db c275bbd 430ca10 8b49454 61401c1 f6609f5 02c1d91 f6609f5 430ca10 87f7811 61401c1 87f7811 61401c1 f6609f5 1b2a135 87f7811 1b2a135 87f7811 1b2a135 87f7811 1b2a135 f6609f5 1b2a135 d8e55a1 1b2a135 87f7811 1b2a135 87f7811 1b2a135 87f7811 045c4b2 f6609f5 87f7811 1b2a135 f6609f5 1b2a135 87f7811 1b2a135 87f7811 1b2a135 10d25e1 1b2a135 291f4f8 1b2a135 87f7811 1b2a135 291f4f8 e73a565 1b2a135 e73a565 1b2a135 87f7811 045c4b2 718ab42 87f7811 1b2a135 87f7811 1b2a135 f6609f5 1b2a135 e73a565 1b2a135 e73a565 291f4f8 e73a565 291f4f8 1b2a135 87f7811 1b2a135 87f7811 1b2a135 87f7811 1b2a135 87f7811 1b2a135 87f7811 1b2a135 87f7811 1b2a135 87f7811 1b2a135 87f7811 1b2a135 440630e 1b2a135 440630e 1b2a135 291590a 1b2a135 440630e 37deecf 1b2a135 37deecf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 |
import os
import gradio as gr
import requests
import inspect
import time
import pandas as pd
from smolagents import DuckDuckGoSearchTool
import threading
from typing import Dict, List, Optional, Tuple, Union
import json
from huggingface_hub import InferenceClient
import base64
from PIL import Image
import io
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Global Cache for Answers ---
cached_answers = {}
cached_questions = []
processing_status = {"is_processing": False, "progress": 0, "total": 0}
# --- Image Processing Tool ---
class ImageAnalysisTool:
def __init__(self, model_name: str = "microsoft/Florence-2-large"):
self.client = InferenceClient(model=model_name)
def analyze_image(self, image_path: str, prompt: str = "Describe this image in detail") -> str:
"""
Analyze an image and return a description.
"""
try:
# Open and process the image
with open(image_path, "rb") as f:
image_bytes = f.read()
# Use the vision model to analyze the image
response = self.client.image_to_text(
image=image_bytes,
model="microsoft/Florence-2-large"
)
return response.get("generated_text", "Could not analyze image")
except Exception as e:
try:
# Fallback: use a different vision model
response = self.client.image_to_text(
image=image_bytes,
model="Salesforce/blip-image-captioning-large"
)
return response.get("generated_text", f"Image analysis error: {e}")
except:
return f"Image analysis failed: {e}"
def extract_text_from_image(self, image_path: str) -> str:
"""
Extract text from an image using OCR.
"""
try:
with open(image_path, "rb") as f:
image_bytes = f.read()
# Use an OCR model
response = self.client.image_to_text(
image=image_bytes,
model="microsoft/trocr-base-printed"
)
return response.get("generated_text", "No text found in image")
except Exception as e:
return f"OCR failed: {e}"
# --- Audio Processing Tool ---
class AudioTranscriptionTool:
def __init__(self, model_name: str = "openai/whisper-large-v3"):
self.client = InferenceClient(model=model_name)
def transcribe_audio(self, audio_path: str) -> str:
"""
Transcribe audio file to text.
"""
try:
with open(audio_path, "rb") as f:
audio_bytes = f.read()
# Use Whisper for transcription
response = self.client.automatic_speech_recognition(
audio=audio_bytes
)
return response.get("text", "Could not transcribe audio")
except Exception as e:
try:
# Fallback to a different ASR model
response = self.client.automatic_speech_recognition(
audio=audio_bytes,
model="facebook/wav2vec2-large-960h-lv60-self"
)
return response.get("text", f"Audio transcription error: {e}")
except:
return f"Audio transcription failed: {e}"
# --- Enhanced Intelligent Agent with Media Processing ---
class IntelligentAgent:
def __init__(self, debug: bool = True, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"):
self.search = DuckDuckGoSearchTool()
self.client = InferenceClient(model=model_name, provider="sambanova")
self.image_tool = ImageAnalysisTool()
self.audio_tool = AudioTranscriptionTool()
self.debug = debug
if self.debug:
print(f"IntelligentAgent initialized with model: {model_name}")
def _chat_completion(self, prompt: str, max_tokens: int = 500, temperature: float = 0.3) -> str:
"""
Use chat completion instead of text generation to avoid provider compatibility issues.
"""
try:
messages = [{"role": "user", "content": prompt}]
# Try chat completion first
try:
response = self.client.chat_completion(
messages=messages,
max_tokens=max_tokens,
temperature=temperature
)
return response.choices[0].message.content.strip()
except Exception as chat_error:
if self.debug:
print(f"Chat completion failed: {chat_error}, trying text generation...")
# Fallback to text generation
response = self.client.conversational(
prompt,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=temperature > 0
)
return response.strip()
except Exception as e:
if self.debug:
print(f"Both chat completion and text generation failed: {e}")
raise e
def _process_media_files(self, image_files: List[str] = None, audio_files: List[str] = None) -> str:
"""
Process attached media files and return their content as text.
"""
media_content = []
# Process images
if image_files:
for image_file in image_files:
if image_file and os.path.exists(image_file):
try:
# Analyze the image
image_description = self.image_tool.analyze_image(image_file)
media_content.append(f"Image Analysis: {image_description}")
# Try to extract text from image
extracted_text = self.image_tool.extract_text_from_image(image_file)
if extracted_text and "No text found" not in extracted_text:
media_content.append(f"Text from Image: {extracted_text}")
except Exception as e:
media_content.append(f"Error processing image {image_file}: {e}")
# Process audio files
if audio_files:
for audio_file in audio_files:
if audio_file and os.path.exists(audio_file):
try:
# Transcribe the audio
transcription = self.audio_tool.transcribe_audio(audio_file)
media_content.append(f"Audio Transcription: {transcription}")
except Exception as e:
media_content.append(f"Error processing audio {audio_file}: {e}")
return "\n\n".join(media_content) if media_content else ""
def _should_search(self, question: str, media_context: str = "") -> bool:
"""
Use LLM to determine if search is needed for the question, considering media context.
Returns True if search is recommended, False otherwise.
"""
decision_prompt = f"""Analyze this question and decide if it requires real-time information, recent data, or specific facts that might not be in your training data.
SEARCH IS NEEDED for:
- Current events, news, recent developments
- Real-time data (weather, stock prices, sports scores)
- Specific factual information that changes frequently
- Recent product releases, company information
- Current status of people, organizations, or projects
- Location-specific current information
SEARCH IS NOT NEEDED for:
- General knowledge questions
- Mathematical calculations
- Programming concepts and syntax
- Historical facts (older than 1 year)
- Definitions of well-established concepts
- How-to instructions for common tasks
- Creative writing or opinion-based responses
- Questions that can be answered from attached media content
Question: "{question}"
{f"Media Context Available: {media_context[:500]}..." if media_context else "No media context available."}
Respond with only "SEARCH" or "NO_SEARCH" followed by a brief reason (max 20 words).
Example responses:
- "SEARCH - Current weather data needed"
- "NO_SEARCH - Mathematical concept, general knowledge sufficient"
- "NO_SEARCH - Can be answered from attached image content"
"""
try:
response = self._chat_completion(decision_prompt, max_tokens=50, temperature=0.1)
decision = response.strip().upper()
should_search = decision.startswith("SEARCH")
time.sleep(5)
if self.debug:
print(f"Decision for '{question}': {decision}")
return should_search
except Exception as e:
if self.debug:
print(f"Error in search decision: {e}, defaulting to search")
# Default to search if decision fails
return True
def _answer_with_llm(self, question: str, media_context: str = "") -> str:
"""
Generate answer using LLM without search, considering media context.
"""
context_section = f"\n\nMedia Context:\n{media_context}" if media_context else ""
answer_prompt = f"""You are a general AI assistant. I will ask you a question. YOUR ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. Do not add a dot after the numbers.
{context_section}
Question: {question}
Answer:"""
try:
response = self._chat_completion(answer_prompt, max_tokens=500, temperature=0.3)
return response
except Exception as e:
return f"Sorry, I encountered an error generating the response: {e}"
def _answer_with_search(self, question: str, media_context: str = "") -> str:
"""
Generate answer using search results and LLM, considering media context.
"""
try:
# Perform search
time.sleep(10)
search_results = self.search(question)
if self.debug:
print(f"Search results type: {type(search_results)}")
if not search_results:
return "No search results found. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question, media_context)
# Format search results - handle different result formats
if isinstance(search_results, str):
search_context = search_results
else:
# Handle list of results
formatted_results = []
for i, result in enumerate(search_results[:3]): # Use top 3 results
if isinstance(result, dict):
title = result.get("title", "No title")
snippet = result.get("snippet", "").strip()
link = result.get("link", "")
formatted_results.append(f"Title: {title}\nContent: {snippet}\nSource: {link}")
elif isinstance(result, str):
formatted_results.append(result)
else:
formatted_results.append(str(result))
search_context = "\n\n".join(formatted_results)
# Generate answer using search context and media context
context_section = f"\n\nMedia Context:\n{media_context}" if media_context else ""
answer_prompt = f"""You are a general AI assistant. I will ask you a question. Based on the search results below, provide an answer to the question. If the search results don't fully answer the question, you can supplement with your general knowledge. Do not add dot if your answer is a number.
Your ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
Question: {question}
Search Results:
{search_context}
{context_section}
Answer:"""
try:
response = self._chat_completion(answer_prompt, max_tokens=600, temperature=0.3)
return response
except Exception as e:
if self.debug:
print(f"LLM generation error: {e}")
# Fallback to simple search result formatting
if search_results:
if isinstance(search_results, str):
return search_results
elif isinstance(search_results, list) and len(search_results) > 0:
first_result = search_results[0]
if isinstance(first_result, dict):
title = first_result.get("title", "Search Result")
snippet = first_result.get("snippet", "").strip()
link = first_result.get("link", "")
return f"**{title}**\n\n{snippet}\n\n{f'Source: {link}' if link else ''}"
else:
return str(first_result)
else:
return str(search_results)
else:
return "Search completed but no usable results found."
except Exception as e:
return f"Search failed: {e}. Let me try to answer based on my knowledge:\n\n" + self._answer_with_llm(question, media_context)
def __call__(self, question: str, image_files: List[str] = None, audio_files: List[str] = None) -> str:
"""
Main entry point - process media files, decide whether to search, and generate appropriate response.
"""
if self.debug:
print(f"Agent received question: {question}")
print(f"Image files: {image_files}")
print(f"Audio files: {audio_files}")
# Early validation
if not question or not question.strip():
return "Please provide a valid question."
try:
# Process media files first
media_context = self._process_media_files(image_files, audio_files)
if self.debug and media_context:
print(f"Media context: {media_context[:200]}...")
# Decide whether to search
if self._should_search(question, media_context):
if self.debug:
print("Using search-based approach")
answer = self._answer_with_search(question, media_context)
else:
if self.debug:
print("Using LLM-only approach")
answer = self._answer_with_llm(question, media_context)
except Exception as e:
answer = f"Sorry, I encountered an error: {e}"
if self.debug:
print(f"Agent returning answer: {answer[:100]}...")
return answer
def fetch_questions() -> Tuple[str, Optional[pd.DataFrame]]:
"""
Fetch questions from the API and cache them.
"""
global cached_questions
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty.", None
cached_questions = questions_data
# Create DataFrame for display
display_data = []
for item in questions_data:
display_data.append({
"Task ID": item.get("task_id", "Unknown"),
"Question": item.get("question", "")
})
df = pd.DataFrame(display_data)
status_msg = f"Successfully fetched {len(questions_data)} questions. Ready to generate answers."
return status_msg, df
except requests.exceptions.RequestException as e:
return f"Error fetching questions: {e}", None
except Exception as e:
return f"An unexpected error occurred: {e}", None
def generate_answers_async(model_name: str = "meta-llama/Llama-3.1-8B-Instruct", progress_callback=None):
"""
Generate answers for all cached questions asynchronously using the intelligent agent.
"""
global cached_answers, processing_status
if not cached_questions:
return "No questions available. Please fetch questions first."
processing_status["is_processing"] = True
processing_status["progress"] = 0
processing_status["total"] = len(cached_questions)
try:
agent = IntelligentAgent(debug=True, model_name=model_name)
cached_answers = {}
for i, item in enumerate(cached_questions):
if not processing_status["is_processing"]: # Check if cancelled
break
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
answer = agent(question_text)
cached_answers[task_id] = {
"question": question_text,
"answer": answer
}
except Exception as e:
cached_answers[task_id] = {
"question": question_text,
"answer": f"AGENT ERROR: {e}"
}
processing_status["progress"] = i + 1
if progress_callback:
progress_callback(i + 1, len(cached_questions))
except Exception as e:
print(f"Error in generate_answers_async: {e}")
finally:
processing_status["is_processing"] = False
def start_answer_generation(model_choice: str):
"""
Start the answer generation process in a separate thread.
"""
if processing_status["is_processing"]:
return "Answer generation is already in progress."
if not cached_questions:
return "No questions available. Please fetch questions first."
# Map model choice to actual model name
model_map = {
"Llama 3.1 8B": "meta-llama/Llama-3.1-8B-Instruct",
"Mistral 7B": "mistralai/Mistral-7B-Instruct-v0.3"
}
selected_model = model_map.get(model_choice, "meta-llama/Llama-3.1-8B-Instruct")
# Start generation in background thread
thread = threading.Thread(target=generate_answers_async, args=(selected_model,))
thread.daemon = True
thread.start()
return f"Answer generation started using {model_choice}. Check progress."
def get_generation_progress():
"""
Get the current progress of answer generation.
"""
if not processing_status["is_processing"] and processing_status["progress"] == 0:
return "Not started"
if processing_status["is_processing"]:
progress = processing_status["progress"]
total = processing_status["total"]
status_msg = f"Generating answers... {progress}/{total} completed"
return status_msg
else:
# Generation completed
if cached_answers:
# Create DataFrame with results
display_data = []
for task_id, data in cached_answers.items():
display_data.append({
"Task ID": task_id,
"Question": data["question"][:100] + "..." if len(data["question"]) > 100 else data["question"],
"Generated Answer": data["answer"][:200] + "..." if len(data["answer"]) > 200 else data["answer"]
})
df = pd.DataFrame(display_data)
status_msg = f"Answer generation completed! {len(cached_answers)} answers ready for submission."
return status_msg, df
else:
return "Answer generation completed but no answers were generated."
def submit_cached_answers(profile: gr.OAuthProfile | None):
"""
Submit the cached answers to the evaluation API.
"""
global cached_answers
if not profile:
return "Please log in to Hugging Face first.", None
if not cached_answers:
return "No cached answers available. Please generate answers first.", None
username = profile.username
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Unknown"
# Prepare submission payload
answers_payload = []
for task_id, data in cached_answers.items():
answers_payload.append({
"task_id": task_id,
"submitted_answer": data["answer"]
})
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
# Submit to API
api_url = DEFAULT_API_URL
submit_url = f"{api_url}/submit"
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
# Create results DataFrame
results_log = []
for task_id, data in cached_answers.items():
results_log.append({
"Task ID": task_id,
"Question": data["question"],
"Submitted Answer": data["answer"]
})
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except:
error_detail += f" Response: {e.response.text[:500]}"
return f"Submission Failed: {error_detail}", None
except requests.exceptions.Timeout:
return "Submission Failed: The request timed out.", None
except Exception as e:
return f"Submission Failed: {e}", None
def clear_cache():
"""
Clear all cached data.
"""
global cached_answers, cached_questions, processing_status
cached_answers = {}
cached_questions = []
processing_status = {"is_processing": False, "progress": 0, "total": 0}
return "Cache cleared successfully.", None
def test_media_processing(image_files, audio_files, question):
"""
Test the media processing functionality with uploaded files.
"""
if not question:
question = "What can you tell me about the uploaded media?"
agent = IntelligentAgent(debug=True)
# Convert file paths to lists
image_paths = [img.name for img in image_files] if image_files else None
audio_paths = [aud.name for aud in audio_files] if audio_files else None
try:
result = agent(question, image_files=image_paths, audio_files=audio_paths)
return result
except Exception as e:
return f"Error processing media: {e}"
# --- Enhanced Gradio Interface ---
with gr.Blocks(title="Intelligent Agent with Media Processing") as demo:
gr.Markdown("# Intelligent Agent with Conditional Search and Media Processing")
gr.Markdown("This agent can process images and audio files, uses an LLM to decide when search is needed, optimizing for both accuracy and efficiency.")
with gr.Row():
gr.LoginButton()
clear_btn = gr.Button("Clear Cache", variant="secondary")
with gr.Tab("Media Processing Test"):
gr.Markdown("### Test Image and Audio Processing")
with gr.Row():
with gr.Column():
image_upload = gr.File(
label="Upload Images",
file_types=["image"],
file_count="multiple"
)
audio_upload = gr.File(
label="Upload Audio Files",
file_types=["audio"],
file_count="multiple"
)
with gr.Column():
test_question = gr.Textbox(
label="Question about the media",
placeholder="What can you tell me about these files?",
lines=3
)
test_btn = gr.Button("Process Media", variant="primary")
test_output = gr.Textbox(
label="Processing Result",
lines=10,
interactive=False
)
test_btn.click(
fn=test_media_processing,
inputs=[image_upload, audio_upload, test_question],
outputs=test_output
)
with gr.Tab("Step 1: Fetch Questions"):
gr.Markdown("### Fetch Questions from API")
fetch_btn = gr.Button("Fetch Questions", variant="primary")
fetch_status = gr.Textbox(label="Fetch Status", lines=2, interactive=False)
questions_table = gr.DataFrame(label="Available Questions", wrap=True)
fetch_btn.click(
fn=fetch_questions,
outputs=[fetch_status, questions_table]
)
with gr.Tab("Step 2: Generate Answers"):
gr.Markdown("### Generate Answers with Intelligent Search Decision")
with gr.Row():
model_choice = gr.Dropdown(
choices=["Llama 3.1 8B", "Mistral 7B"],
value="Llama 3.1 8B",
label="Select Model"
)
generate_btn = gr.Button("Start Answer Generation", variant="primary")
refresh_btn = gr.Button("Refresh Progress", variant="secondary")
generation_status = gr.Textbox(label="Generation Status", lines=2, interactive=False)
answers_table = gr.DataFrame(label="Generated Answers", wrap=True)
generate_btn.click(
fn=start_answer_generation,
inputs=[model_choice],
outputs=generation_status
)
refresh_btn.click(
fn=get_generation_progress,
outputs=[generation_status, answers_table]
)
with gr.Tab("Step 3: Submit Results"):
gr.Markdown("### Submit Generated Answers")
submit_btn = gr.Button("Submit Answers", variant="primary")
submit_status = gr.Textbox(label="Submission Status", lines=4, interactive=False)
results_table = gr.DataFrame(label="Submission Results", wrap=True)
submit_btn.click(
fn=submit_cached_answers,
outputs=[submit_status, results_table]
)
# Clear cache functionality
clear_btn.click(
fn=clear_cache,
outputs=[fetch_status, questions_table]
)
if __name__ == "__main__":
demo.launch()
|