tdurzynski's picture
Update app.py
5f31935 verified
raw
history blame
15.4 kB
import streamlit as st
import json
import os
import boto3
from PIL import Image
import firebase_admin
from firebase_admin import credentials, auth
import pandas as pd
import uuid
from datetime import datetime
from io import BytesIO
import streamlit_tags as st_tags
from dotenv import load_dotenv
# Load environment variables from .env file if it exists
load_dotenv()
# Load AWS credentials using correct HF Secrets
AWS_ACCESS_KEY = os.getenv("AWS_ACCESS_KEY")
AWS_SECRET_KEY = os.getenv("AWS_SECRET_KEY")
AWS_REGION = os.getenv("AWS_REGION", "us-east-1")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME", "food-image-crowdsourcing")
DYNAMODB_TABLE = os.getenv("DYNAMODB_TABLE", "image_metadata")
# Load Firebase credentials
FIREBASE_CONFIG = json.loads(os.getenv("FIREBASE_CONFIG", "{}"))
# Initialize Firebase Admin SDK (Prevent multiple initialization)
if not firebase_admin._apps:
try:
cred = credentials.Certificate(FIREBASE_CONFIG)
firebase_admin.initialize_app(cred)
except Exception as e:
st.error(f"Firebase initialization error: {e}")
if st.button("Continue in Demo Mode"):
st.session_state["demo_mode"] = True
else:
st.stop()
# Initialize AWS Services (S3 & DynamoDB)
try:
s3 = boto3.client(
"s3",
aws_access_key_id=AWS_ACCESS_KEY,
aws_secret_access_key=AWS_SECRET_KEY,
region_name=AWS_REGION
)
dynamodb = boto3.resource(
"dynamodb",
region_name=AWS_REGION,
aws_access_key_id=AWS_ACCESS_KEY,
aws_secret_access_key=AWS_SECRET_KEY,
)
metadata_table = dynamodb.Table(DYNAMODB_TABLE)
except Exception as e:
st.error(f"AWS initialization error: {e}")
if st.button("Continue in Demo Mode"):
st.session_state["demo_mode"] = True
else:
st.stop()
# Food Intellisense List
FOOD_SUGGESTIONS = [
"Apple", "Banana", "Pizza", "Burger", "Pasta", "Sushi", "Tacos", "Salad",
"Chicken (Baked)", "Chicken (Roasted)", "Chicken (Grilled)", "Chicken (Boiled)",
"Fish (Grilled)", "Fish (Fried)", "Fish (Steamed)", "Beef Steak", "Pork Chops",
"Spaghetti Carbonara", "Lasagna", "Pad Thai", "Dim Sum", "Kimchi Fried Rice",
"Biryani", "Croissant", "Baguette", "Miso Soup", "Ramen", "Pierogi", "Gyoza",
"Schnitzel", "Creole Gumbo", "Jambalaya", "Tandoori Chicken", "Falafel", "Shawarma"
] # Extended with diverse cuisines
# Unit options for food weight/volume
UNIT_OPTIONS = ["grams", "ounces", "teaspoons", "tablespoons", "cups", "slices", "pieces"]
# Cooking methods
COOKING_METHODS = [
"Baked", "Boiled", "Broiled", "Fried", "Grilled", "Microwaved",
"Pan-seared", "Poached", "Raw", "Roasted", "Sautéed", "Steamed",
"Stewed", "Stir-fried", "Takeout/Restaurant", "Unknown"
]
# Helper functions
def resize_image(image, max_size=512, quality=85):
"""
Resize image while preserving aspect ratio and reducing file size
Args:
image: PIL Image object
max_size: Maximum dimension (width or height)
quality: JPEG quality (0-100)
Returns:
Resized PIL Image
"""
# Calculate new dimensions
width, height = image.width, image.height
# Only resize if the image is larger than max_size
if width > max_size or height > max_size:
if width > height:
new_width = max_size
new_height = int(height * (max_size / width))
else:
new_height = max_size
new_width = int(width * (max_size / height))
# Resize the image
resized_img = image.resize((new_width, new_height), Image.LANCZOS)
else:
# If image is already smaller than max_size, don't resize
return image
# Convert to RGB if image has alpha channel (for JPEG conversion)
if resized_img.mode == 'RGBA':
resized_img = resized_img.convert('RGB')
# Compress the image
buffer = BytesIO()
resized_img.save(buffer, format="JPEG", quality=quality, optimize=True)
buffer.seek(0)
# Return the compressed image
return Image.open(buffer)
def get_image_size_kb(image):
"""Get image file size in KB"""
buffer = BytesIO()
image.save(buffer, format="JPEG")
size_bytes = buffer.tell()
return size_bytes / 1024 # Convert to KB
def upload_to_s3(image, user_id):
"""Upload image to S3 bucket and return the S3 path"""
if st.session_state.get("demo_mode", False):
return f"demo/{user_id}/demo_image.jpg"
try:
# Generate a unique ID for the image
image_id = str(uuid.uuid4())
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
s3_path = f"{user_id}/{timestamp}_{image_id}.jpg"
# Convert PIL image to bytes
buffer = BytesIO()
image.save(buffer, format="JPEG", quality=85, optimize=True)
buffer.seek(0)
# Upload to S3
s3.upload_fileobj(buffer, S3_BUCKET_NAME, s3_path)
return s3_path
except Exception as e:
st.error(f"Failed to upload image: {e}")
return None
def save_metadata(user_id, s3_path, food_name, portion_size, portion_unit, cooking_method, ingredients, tokens_awarded):
"""Save metadata to DynamoDB"""
if st.session_state.get("demo_mode", False):
st.success("Demo mode: Metadata would be saved to DynamoDB")
return True
try:
# Generate a unique ID for the database entry
image_id = str(uuid.uuid4())
timestamp = datetime.now().isoformat()
# Create item for DynamoDB
item = {
'image_id': image_id,
'user_id': user_id,
'upload_timestamp': timestamp,
'food_name': food_name,
'portion_size': portion_size,
'portion_unit': portion_unit,
'cooking_method': cooking_method,
'ingredients': ingredients,
's3_path': s3_path,
'tokens_awarded': tokens_awarded
}
# Save to DynamoDB
metadata_table.put_item(Item=item)
return True
except Exception as e:
st.error(f"Failed to save metadata: {e}")
return False
def calculate_tokens(image_quality, has_metadata, is_unique_category):
"""Calculate tokens based on various factors"""
tokens = 1 # Base token for upload
if image_quality == "high":
tokens += 1
if has_metadata:
tokens += 1
if is_unique_category:
tokens += 1
return tokens
# Initialize session state for first-time users
if "tokens" not in st.session_state:
st.session_state["tokens"] = 0
if "uploads_count" not in st.session_state:
st.session_state["uploads_count"] = 0
# Streamlit Layout - Authentication Section
st.sidebar.title("🔑 User Authentication")
auth_option = st.sidebar.radio("Select an option", ["Login", "Sign Up", "Logout"])
if auth_option == "Sign Up":
email = st.sidebar.text_input("Email")
password = st.sidebar.text_input("Password", type="password")
if st.sidebar.button("Sign Up"):
try:
if st.session_state.get("demo_mode", False):
st.sidebar.success("✅ Demo mode: User created successfully! Please log in.")
else:
user = auth.create_user(email=email, password=password)
st.sidebar.success("✅ User created successfully! Please log in.")
except Exception as e:
st.sidebar.error(f"Error: {e}")
if auth_option == "Login":
email = st.sidebar.text_input("Email")
password = st.sidebar.text_input("Password", type="password")
if st.sidebar.button("Login"):
try:
if st.session_state.get("demo_mode", False):
st.session_state["user_id"] = "demo_user_123"
st.session_state["tokens"] = 0 # Initialize token count
st.sidebar.success("✅ Demo mode: Logged in successfully!")
else:
user = auth.get_user_by_email(email)
st.session_state["user_id"] = user.uid
st.session_state["tokens"] = 0 # Initialize token count
st.sidebar.success("✅ Logged in successfully!")
except Exception as e:
st.sidebar.error(f"Login failed: {e}")
if auth_option == "Logout" and "user_id" in st.session_state:
del st.session_state["user_id"]
st.sidebar.success("✅ Logged out successfully!")
# Ensure user is logged in before uploading
if "user_id" not in st.session_state and not st.session_state.get("demo_mode", False):
st.warning("⚠️ Please log in to upload images.")
# Add links to guidelines and terms
st.markdown("### 📚 While You're Here")
st.markdown("Take a moment to read our guidelines and token system:")
col1, col2, col3 = st.columns(3)
with col1:
if st.button("Participation Guidelines"):
with open("PARTICIPATION_GUIDELINES.md", "r") as f:
guidelines = f.read()
st.markdown(guidelines)
with col2:
if st.button("Token Rewards"):
with open("TOKEN_REWARDS.md", "r") as f:
rewards = f.read()
st.markdown(rewards)
with col3:
if st.button("Terms of Service"):
with open("TERMS_OF_SERVICE.md", "r") as f:
terms = f.read()
st.markdown(terms)
st.stop()
# Streamlit Layout - Main App
st.title("🍽️ Food Image Review & Annotation")
# Compliance & Disclaimer Section
with st.expander("📜 Terms & Conditions", expanded=False):
st.markdown("### **Terms & Conditions**")
st.write(
"By uploading an image, you agree to transfer full copyright to the research team for AI training purposes."
" You are responsible for ensuring you own the image and it does not violate any copyright laws."
" We do not guarantee when tokens will be redeemable. Keep track of your user ID.")
terms_accepted = st.checkbox("I agree to the terms and conditions", key="terms_accepted")
if not terms_accepted:
st.warning("⚠️ You must agree to the terms before proceeding.")
st.stop()
# Upload Image
uploaded_file = st.file_uploader("Upload an image of your food", type=["jpg", "png", "jpeg"])
if uploaded_file:
original_img = Image.open(uploaded_file)
st.session_state["original_image"] = original_img
# If an image has been uploaded, process and display it
if "original_image" in st.session_state:
original_img = st.session_state["original_image"]
# Process the image - resize and compress
processed_img = resize_image(original_img, max_size=512, quality=85)
st.session_state["processed_image"] = processed_img
# Calculate file sizes
original_size = get_image_size_kb(original_img)
processed_size = get_image_size_kb(processed_img)
size_reduction = ((original_size - processed_size) / original_size) * 100 if original_size > 0 else 0
# Display images side by side
col1, col2 = st.columns(2)
with col1:
st.subheader("📷 Original Image")
st.image(original_img, caption=f"Original ({original_img.width}x{original_img.height} px, {original_size:.1f} KB)", use_container_width=True)
with col2:
st.subheader("🖼️ Processed Image")
st.image(processed_img, caption=f"Processed ({processed_img.width}x{processed_img.height} px, {processed_size:.1f} KB)", use_container_width=True)
# Show size reduction
if size_reduction > 5: # Only show if there's a meaningful reduction
st.success(f"✅ Image size reduced by {size_reduction:.1f}% for faster uploads and processing")
# Food metadata form
st.subheader("🍲 Food Details")
food_name = st.selectbox("Food Name", options=[""] + FOOD_SUGGESTIONS, index=0)
if food_name == "":
food_name = st.text_input("Or enter a custom food name")
col1, col2 = st.columns(2)
with col1:
portion_size = st.number_input("Portion Size", min_value=0.1, step=0.1)
with col2:
portion_unit = st.selectbox("Unit", options=UNIT_OPTIONS)
cooking_method = st.selectbox("Cooking Method", options=[""] + COOKING_METHODS)
ingredients = st_tags.st_tags(
label="Main Ingredients (Add up to 5)",
text="Press enter to add",
value=[],
suggestions=["Salt", "Pepper", "Olive Oil", "Butter", "Garlic", "Onion", "Tomato"],
maxtags=5
)
# Submit button
if st.button("📤 Submit Food Image"):
with st.spinner("Processing your submission..."):
# Determine image quality (simplified version)
image_quality = "high" if original_img.width >= 1000 and original_img.height >= 1000 else "standard"
# Check if metadata is complete
has_metadata = bool(food_name and portion_size and portion_unit and cooking_method)
# Check if the food is in a unique category (simplified)
is_unique_category = food_name not in ["Pizza", "Burger", "Pasta", "Salad"]
# Calculate tokens
tokens_awarded = calculate_tokens(image_quality, has_metadata, is_unique_category)
# Upload image to S3
s3_path = upload_to_s3(processed_img, st.session_state["user_id"])
if s3_path:
# Save metadata to DynamoDB
success = save_metadata(
st.session_state["user_id"],
s3_path,
food_name,
float(portion_size),
portion_unit,
cooking_method,
ingredients,
tokens_awarded
)
if success:
st.session_state["tokens"] += tokens_awarded
st.session_state["uploads_count"] += 1
st.success(f"✅ Food image uploaded successfully! You earned {tokens_awarded} tokens.")
# Clear the form and image for a new submission
st.session_state.pop("original_image", None)
st.session_state.pop("processed_image", None)
st.experimental_rerun()
else:
st.error("Failed to save metadata. Please try again.")
else:
st.error("Failed to upload image. Please try again.")
# Display earned tokens
st.sidebar.markdown("---")
st.sidebar.subheader("🏆 Your Statistics")
st.sidebar.info(f"🪙 Total Tokens: {st.session_state['tokens']}")
st.sidebar.info(f"📸 Total Uploads: {st.session_state.get('uploads_count', 0)}")
# Help and Documentation Links
st.sidebar.markdown("---")
st.sidebar.subheader("📚 Resources")
if st.sidebar.button("Participation Guidelines"):
with open("PARTICIPATION_GUIDELINES.md", "r") as f:
guidelines = f.read()
st.sidebar.markdown(guidelines)
if st.sidebar.button("Token Rewards System"):
with open("TOKEN_REWARDS.md", "r") as f:
rewards = f.read()
st.sidebar.markdown(rewards)
if st.sidebar.button("Terms of Service"):
with open("TERMS_OF_SERVICE.md", "r") as f:
terms = f.read()
st.sidebar.markdown(terms)