cyber_llm / advanced_ai.py
unit731's picture
Upload folder using huggingface_hub
03839fe verified
"""
Simplified Neural-Symbolic AI for Hugging Face Space
Based on src/learning/neurosymbolic_ai.py
"""
import numpy as np
import json
from datetime import datetime
from typing import Dict, List, Any, Optional
import logging
class SimplifiedNeuroSymbolicAI:
"""Simplified neural-symbolic AI for cybersecurity analysis in HF Space"""
def __init__(self):
self.logger = logging.getLogger(__name__)
# Cybersecurity knowledge rules (simplified)
self.security_rules = {
"malware_indicators": [
"suspicious_process_execution",
"network_communication_anomaly",
"file_modification_pattern",
"registry_manipulation"
],
"network_threats": [
"port_scanning",
"brute_force_attack",
"ddos_pattern",
"lateral_movement"
],
"data_exfiltration": [
"large_data_transfer",
"encrypted_communication",
"unusual_access_pattern",
"external_connection"
]
}
# Threat severity mapping
self.threat_severity = {
"critical": {"score": 0.9, "action": "immediate_response"},
"high": {"score": 0.7, "action": "urgent_investigation"},
"medium": {"score": 0.5, "action": "monitor_closely"},
"low": {"score": 0.3, "action": "routine_check"}
}
def analyze_threat_neural_symbolic(self, threat_data: str,
context: Optional[Dict] = None) -> Dict[str, Any]:
"""Perform neural-symbolic threat analysis"""
analysis_id = f"ns_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
# Neural processing (simplified)
neural_features = self._extract_neural_features(threat_data)
# Symbolic reasoning
symbolic_analysis = self._symbolic_reasoning(threat_data, neural_features)
# Integration
integrated_result = self._integrate_analysis(neural_features, symbolic_analysis)
return {
"analysis_id": analysis_id,
"timestamp": datetime.now().isoformat(),
"threat_data": threat_data,
"neural_analysis": {
"feature_extraction": neural_features,
"confidence": neural_features.get("confidence", 0.8)
},
"symbolic_analysis": symbolic_analysis,
"integrated_result": integrated_result,
"recommendations": self._generate_recommendations(integrated_result)
}
def _extract_neural_features(self, threat_data: str) -> Dict[str, Any]:
"""Extract neural features from threat data"""
# Simulate neural network feature extraction
features = {
"anomaly_score": min(0.9, len(threat_data) / 100.0 + 0.3),
"semantic_features": [],
"behavioral_patterns": [],
"confidence": 0.8
}
# Pattern recognition
threat_lower = threat_data.lower()
if any(term in threat_lower for term in ["malware", "virus", "trojan", "backdoor"]):
features["semantic_features"].append("malware_related")
features["anomaly_score"] += 0.2
if any(term in threat_lower for term in ["network", "scan", "port", "connection"]):
features["semantic_features"].append("network_activity")
features["anomaly_score"] += 0.1
if any(term in threat_lower for term in ["data", "exfiltration", "transfer", "leak"]):
features["semantic_features"].append("data_movement")
features["anomaly_score"] += 0.3
# Behavioral pattern analysis
if "suspicious" in threat_lower:
features["behavioral_patterns"].append("suspicious_behavior")
if "anomal" in threat_lower:
features["behavioral_patterns"].append("anomalous_activity")
if "attack" in threat_lower:
features["behavioral_patterns"].append("attack_pattern")
features["anomaly_score"] = min(0.95, features["anomaly_score"])
return features
def _symbolic_reasoning(self, threat_data: str, neural_features: Dict) -> Dict[str, Any]:
"""Apply symbolic reasoning rules"""
conclusions = []
applied_rules = []
confidence_scores = []
threat_lower = threat_data.lower()
# Rule 1: Malware detection
if any(indicator in neural_features.get("semantic_features", []) for indicator in ["malware_related"]):
conclusions.append({
"rule": "malware_detection_rule",
"conclusion": "Potential malware activity detected",
"confidence": 0.85,
"evidence": neural_features["semantic_features"]
})
applied_rules.append("malware_detection_rule")
confidence_scores.append(0.85)
# Rule 2: Network threat assessment
if "network_activity" in neural_features.get("semantic_features", []):
network_confidence = 0.7
if any(term in threat_lower for term in ["scan", "brute", "ddos"]):
network_confidence = 0.9
conclusions.append({
"rule": "network_threat_rule",
"conclusion": "Network-based threat activity identified",
"confidence": network_confidence,
"evidence": ["network_activity_patterns"]
})
applied_rules.append("network_threat_rule")
confidence_scores.append(network_confidence)
# Rule 3: Data exfiltration risk
if "data_movement" in neural_features.get("semantic_features", []):
conclusions.append({
"rule": "data_exfiltration_rule",
"conclusion": "Potential data exfiltration attempt detected",
"confidence": 0.8,
"evidence": ["unusual_data_transfer_patterns"]
})
applied_rules.append("data_exfiltration_rule")
confidence_scores.append(0.8)
# Rule 4: Behavioral anomaly
if neural_features["anomaly_score"] > 0.7:
conclusions.append({
"rule": "behavioral_anomaly_rule",
"conclusion": "High behavioral anomaly detected",
"confidence": neural_features["anomaly_score"],
"evidence": neural_features["behavioral_patterns"]
})
applied_rules.append("behavioral_anomaly_rule")
confidence_scores.append(neural_features["anomaly_score"])
return {
"conclusions": conclusions,
"applied_rules": applied_rules,
"overall_confidence": np.mean(confidence_scores) if confidence_scores else 0.5,
"reasoning_steps": len(conclusions)
}
def _integrate_analysis(self, neural_features: Dict, symbolic_analysis: Dict) -> Dict[str, Any]:
"""Integrate neural and symbolic analysis results"""
# Calculate overall threat level
neural_score = neural_features["anomaly_score"]
symbolic_score = symbolic_analysis["overall_confidence"]
integrated_score = (neural_score + symbolic_score) / 2
# Determine threat level
if integrated_score >= 0.8:
threat_level = "CRITICAL"
severity = "critical"
elif integrated_score >= 0.6:
threat_level = "HIGH"
severity = "high"
elif integrated_score >= 0.4:
threat_level = "MEDIUM"
severity = "medium"
else:
threat_level = "LOW"
severity = "low"
return {
"threat_level": threat_level,
"severity": severity,
"integrated_score": round(integrated_score, 3),
"neural_contribution": round(neural_score, 3),
"symbolic_contribution": round(symbolic_score, 3),
"confidence": min(0.95, integrated_score),
"explanation": self._generate_explanation(neural_features, symbolic_analysis, threat_level)
}
def _generate_explanation(self, neural_features: Dict, symbolic_analysis: Dict, threat_level: str) -> str:
"""Generate human-readable explanation"""
explanation_parts = [
f"πŸ” Analysis indicates {threat_level} threat level based on:",
"",
"🧠 Neural Analysis:",
f" β€’ Anomaly Score: {neural_features['anomaly_score']:.2f}",
f" β€’ Detected Features: {', '.join(neural_features.get('semantic_features', ['none']))}",
f" β€’ Behavioral Patterns: {', '.join(neural_features.get('behavioral_patterns', ['none']))}",
"",
"πŸ”— Symbolic Reasoning:",
f" β€’ Rules Applied: {len(symbolic_analysis['applied_rules'])}",
f" β€’ Conclusions: {len(symbolic_analysis['conclusions'])}",
f" β€’ Confidence: {symbolic_analysis['overall_confidence']:.2f}",
]
if symbolic_analysis["conclusions"]:
explanation_parts.append(" β€’ Key Findings:")
for conclusion in symbolic_analysis["conclusions"][:3]:
explanation_parts.append(f" - {conclusion['conclusion']} (confidence: {conclusion['confidence']:.2f})")
return "\n".join(explanation_parts)
def _generate_recommendations(self, integrated_result: Dict) -> List[str]:
"""Generate actionable security recommendations"""
severity = integrated_result["severity"]
threat_level = integrated_result["threat_level"]
recommendations = []
# Base recommendations by severity
severity_info = self.threat_severity.get(severity, self.threat_severity["medium"])
if severity == "critical":
recommendations.extend([
"🚨 IMMEDIATE ACTION REQUIRED",
"β€’ Initiate incident response procedures",
"β€’ Isolate affected systems immediately",
"β€’ Contact security team and management",
"β€’ Begin forensic data collection"
])
elif severity == "high":
recommendations.extend([
"⚠️ URGENT INVESTIGATION NEEDED",
"β€’ Deploy additional monitoring on affected systems",
"β€’ Implement network segmentation if possible",
"β€’ Escalate to security analysts",
"β€’ Review related security logs"
])
elif severity == "medium":
recommendations.extend([
"πŸ” CLOSE MONITORING RECOMMENDED",
"β€’ Increase logging and monitoring",
"β€’ Schedule security review within 24 hours",
"β€’ Implement additional access controls",
"β€’ Update threat intelligence feeds"
])
else:
recommendations.extend([
"βœ… ROUTINE SECURITY MEASURES",
"β€’ Continue normal monitoring",
"β€’ Document findings for future reference",
"β€’ Regular security updates recommended"
])
# Add specific recommendations based on analysis
recommendations.append("\nπŸ›‘οΈ SPECIFIC SECURITY MEASURES:")
recommendations.extend([
"β€’ Update antivirus and security signatures",
"β€’ Review network access controls",
"β€’ Validate backup and recovery procedures",
"β€’ Consider threat hunting activities"
])
return recommendations
# Initialize global instance for the Space
neuro_symbolic_ai = SimplifiedNeuroSymbolicAI()