cyber_llm / src /learning /neurosymbolic_ai.py
unit731's picture
Upload core Cyber-LLM platform components
23804b3 verified
"""
Neuro-Symbolic AI for Cybersecurity
Combining neural networks with symbolic reasoning for explainable AI
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import json
from typing import Dict, List, Optional, Any, Tuple, Union, Set
from dataclasses import dataclass, asdict
from datetime import datetime, timedelta
import logging
from abc import ABC, abstractmethod
from collections import defaultdict
import sqlite3
import pickle
from enum import Enum
import networkx as nx
import ast
import re
from sympy import symbols, And, Or, Not, Implies, simplify
from sympy.logic.boolalg import to_cnf, to_dnf
class SymbolicRule:
"""Symbolic rule for cybersecurity reasoning"""
def __init__(self, rule_id: str, premise: str, conclusion: str,
confidence: float = 1.0, priority: int = 1):
self.rule_id = rule_id
self.premise = premise # Logical expression as string
self.conclusion = conclusion
self.confidence = confidence
self.priority = priority
self.usage_count = 0
self.success_count = 0
self.created_at = datetime.now().isoformat()
def __str__(self):
return f"Rule({self.rule_id}): IF {self.premise} THEN {self.conclusion} [conf={self.confidence:.2f}]"
@dataclass
class SymbolicFact:
"""Symbolic fact in the knowledge base"""
fact_id: str
predicate: str
arguments: List[str]
truth_value: bool
confidence: float
source: str
timestamp: str
metadata: Dict[str, Any]
@dataclass
class InferenceStep:
"""Single step in symbolic reasoning"""
step_id: str
rule_applied: str
premises_used: List[str]
conclusion_derived: str
confidence: float
timestamp: str
class SymbolicKnowledgeBase:
"""Knowledge base for symbolic reasoning"""
def __init__(self):
self.facts = {} # fact_id -> SymbolicFact
self.rules = {} # rule_id -> SymbolicRule
self.predicates = set()
self.entities = set()
# Initialize with cybersecurity domain knowledge
self._init_cybersecurity_knowledge()
def _init_cybersecurity_knowledge(self):
"""Initialize with domain-specific cybersecurity rules"""
# Basic cybersecurity rules
rules = [
# Network security rules
SymbolicRule("net_01", "external_connection(X) & suspicious_activity(X)", "potential_intrusion(X)", 0.8, 1),
SymbolicRule("net_02", "port_scan(X) & failed_login(X)", "reconnaissance(X)", 0.9, 2),
SymbolicRule("net_03", "large_data_transfer(X) & external_connection(X)", "potential_exfiltration(X)", 0.7, 2),
# Malware detection rules
SymbolicRule("mal_01", "unknown_process(X) & network_activity(X)", "suspicious_process(X)", 0.6, 1),
SymbolicRule("mal_02", "file_modification(X) & system_file(X)", "potential_malware(X)", 0.8, 2),
SymbolicRule("mal_03", "encrypted_communication(X) & c2_domain(X)", "malware_communication(X)", 0.9, 3),
# User behavior rules
SymbolicRule("usr_01", "off_hours_access(X) & privileged_account(X)", "suspicious_access(X)", 0.7, 2),
SymbolicRule("usr_02", "multiple_failed_logins(X) & admin_account(X)", "brute_force_attempt(X)", 0.9, 3),
SymbolicRule("usr_03", "data_access(X) & unusual_location(X)", "insider_threat(X)", 0.6, 2),
# Attack progression rules
SymbolicRule("att_01", "reconnaissance(X) & vulnerability_exploit(X)", "initial_compromise(X)", 0.8, 3),
SymbolicRule("att_02", "initial_compromise(X) & credential_theft(X)", "lateral_movement(X)", 0.9, 3),
SymbolicRule("att_03", "lateral_movement(X) & data_access(X)", "mission_completion(X)", 0.8, 3),
# Response rules
SymbolicRule("rsp_01", "potential_intrusion(X)", "alert_soc(X)", 1.0, 1),
SymbolicRule("rsp_02", "malware_communication(X)", "block_traffic(X)", 1.0, 2),
SymbolicRule("rsp_03", "brute_force_attempt(X)", "lock_account(X)", 1.0, 3),
]
for rule in rules:
self.add_rule(rule)
def add_fact(self, fact: SymbolicFact):
"""Add a fact to the knowledge base"""
self.facts[fact.fact_id] = fact
self.predicates.add(fact.predicate)
self.entities.update(fact.arguments)
def add_rule(self, rule: SymbolicRule):
"""Add a rule to the knowledge base"""
self.rules[rule.rule_id] = rule
def get_facts_by_predicate(self, predicate: str) -> List[SymbolicFact]:
"""Get all facts with a specific predicate"""
return [fact for fact in self.facts.values() if fact.predicate == predicate]
def evaluate_premise(self, premise: str, variable_bindings: Dict[str, str]) -> Tuple[bool, float]:
"""Evaluate a logical premise given variable bindings"""
try:
# Simple evaluation - replace variables and check facts
bound_premise = premise
for var, value in variable_bindings.items():
bound_premise = bound_premise.replace(var, f'"{value}"')
# Parse logical expression
terms = self._parse_logical_expression(bound_premise)
# Evaluate each term
term_results = []
for term in terms:
predicate, args, negated = term
fact_exists = self._fact_exists(predicate, args)
if negated:
term_results.append((not fact_exists, 1.0 if not fact_exists else 0.0))
else:
confidence = self._get_fact_confidence(predicate, args) if fact_exists else 0.0
term_results.append((fact_exists, confidence))
# Combine results (simplified - assume AND for now)
all_true = all(result[0] for result in term_results)
avg_confidence = np.mean([result[1] for result in term_results]) if term_results else 0.0
return all_true, avg_confidence
except Exception as e:
logging.error(f"Error evaluating premise {premise}: {e}")
return False, 0.0
def _parse_logical_expression(self, expression: str) -> List[Tuple[str, List[str], bool]]:
"""Parse logical expression into terms"""
# Simplified parsing - handles basic predicates with AND/OR
terms = []
# Split by & (AND) for now
clauses = expression.split(" & ")
for clause in clauses:
clause = clause.strip()
negated = clause.startswith("~") or clause.startswith("not ")
if negated:
clause = clause.replace("~", "").replace("not ", "").strip()
# Extract predicate and arguments
match = re.match(r'(\w+)\((.*)\)', clause)
if match:
predicate = match.group(1)
args_str = match.group(2)
args = [arg.strip().strip('"') for arg in args_str.split(",")]
terms.append((predicate, args, negated))
return terms
def _fact_exists(self, predicate: str, args: List[str]) -> bool:
"""Check if a fact exists in the knowledge base"""
for fact in self.facts.values():
if fact.predicate == predicate and fact.arguments == args and fact.truth_value:
return True
return False
def _get_fact_confidence(self, predicate: str, args: List[str]) -> float:
"""Get confidence of a fact"""
for fact in self.facts.values():
if fact.predicate == predicate and fact.arguments == args and fact.truth_value:
return fact.confidence
return 0.0
class NeuralSymbolicIntegrator(nn.Module):
"""Neural network component that interfaces with symbolic reasoning"""
def __init__(self, input_dim: int, symbol_dim: int = 128, hidden_dim: int = 256):
super().__init__()
self.input_dim = input_dim
self.symbol_dim = symbol_dim
self.hidden_dim = hidden_dim
# Neural feature extractor
self.feature_extractor = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Dropout(0.3)
)
# Symbolic concept embeddings
self.concept_embeddings = nn.Embedding(1000, symbol_dim) # Assume up to 1000 concepts
# Neural-symbolic fusion layers
self.fusion_attention = nn.MultiheadAttention(
embed_dim=symbol_dim, num_heads=8, batch_first=True
)
self.fusion_network = nn.Sequential(
nn.Linear(hidden_dim + symbol_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim)
)
# Concept activation predictor
self.concept_predictor = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim // 2),
nn.ReLU(),
nn.Linear(hidden_dim // 2, 100), # Predict activation of top 100 concepts
nn.Sigmoid()
)
# Rule confidence predictor
self.rule_confidence_predictor = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim // 2),
nn.ReLU(),
nn.Linear(hidden_dim // 2, 50), # Predict confidence for top 50 rules
nn.Sigmoid()
)
# Explanation generator
self.explanation_encoder = nn.LSTM(symbol_dim, hidden_dim // 2, batch_first=True)
self.explanation_decoder = nn.Sequential(
nn.Linear(hidden_dim // 2, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, symbol_dim)
)
def forward(self, neural_input: torch.Tensor,
symbolic_concepts: torch.Tensor = None,
concept_weights: torch.Tensor = None) -> Dict[str, torch.Tensor]:
"""Forward pass combining neural and symbolic processing"""
# Extract neural features
neural_features = self.feature_extractor(neural_input)
# Get symbolic concept embeddings
if symbolic_concepts is not None:
concept_embeds = self.concept_embeddings(symbolic_concepts)
# Apply attention between neural features and symbolic concepts
if concept_weights is not None:
# Weighted attention
attended_concepts, attention_weights = self.fusion_attention(
concept_embeds, concept_embeds, concept_embeds,
key_padding_mask=(concept_weights == 0)
)
else:
attended_concepts, attention_weights = self.fusion_attention(
concept_embeds, concept_embeds, concept_embeds
)
# Pool attended concepts
pooled_concepts = attended_concepts.mean(dim=1)
# Fuse neural and symbolic representations
fused_features = torch.cat([neural_features, pooled_concepts], dim=-1)
integrated_features = self.fusion_network(fused_features)
else:
integrated_features = neural_features
pooled_concepts = torch.zeros(neural_features.shape[0], self.symbol_dim,
device=neural_features.device)
# Predict concept activations
concept_activations = self.concept_predictor(integrated_features)
# Predict rule confidences
rule_confidences = self.rule_confidence_predictor(integrated_features)
# Generate explanation features
explanation_input = pooled_concepts.unsqueeze(1) # Add sequence dimension
explanation_features, _ = self.explanation_encoder(explanation_input)
explanation_output = self.explanation_decoder(explanation_features.squeeze(1))
return {
'neural_features': neural_features,
'integrated_features': integrated_features,
'concept_activations': concept_activations,
'rule_confidences': rule_confidences,
'explanation_features': explanation_output,
'attention_weights': attention_weights if symbolic_concepts is not None else None
}
class SymbolicReasoner:
"""Symbolic reasoning engine"""
def __init__(self, knowledge_base: SymbolicKnowledgeBase):
self.kb = knowledge_base
self.inference_history = []
self.logger = logging.getLogger(__name__)
def forward_chaining(self, max_iterations: int = 100) -> List[InferenceStep]:
"""Perform forward chaining inference"""
inference_steps = []
iteration = 0
while iteration < max_iterations:
new_facts_derived = False
iteration += 1
# Try to apply each rule
for rule in self.kb.rules.values():
# Find variable bindings that satisfy the premise
bindings = self._find_variable_bindings(rule.premise)
for binding in bindings:
# Check if premise is satisfied
premise_satisfied, premise_confidence = self.kb.evaluate_premise(
rule.premise, binding
)
if premise_satisfied and premise_confidence > 0.5:
# Derive conclusion
conclusion = self._apply_binding(rule.conclusion, binding)
# Check if conclusion is already known
if not self._conclusion_exists(conclusion):
# Add new fact
new_fact = self._create_fact_from_conclusion(
conclusion, premise_confidence * rule.confidence, rule.rule_id
)
if new_fact:
self.kb.add_fact(new_fact)
# Record inference step
step = InferenceStep(
step_id=f"step_{len(inference_steps)}",
rule_applied=rule.rule_id,
premises_used=[rule.premise],
conclusion_derived=conclusion,
confidence=premise_confidence * rule.confidence,
timestamp=datetime.now().isoformat()
)
inference_steps.append(step)
# Update rule usage
rule.usage_count += 1
rule.success_count += 1
new_facts_derived = True
# Stop if no new facts were derived
if not new_facts_derived:
break
self.inference_history.extend(inference_steps)
return inference_steps
def _find_variable_bindings(self, premise: str) -> List[Dict[str, str]]:
"""Find possible variable bindings for a premise"""
# Extract variables (uppercase single letters)
variables = re.findall(r'\b[A-Z]\b', premise)
if not variables:
return [{}] # No variables to bind
# Generate possible bindings from entities in KB
bindings = []
entities_list = list(self.kb.entities)
if len(variables) == 1:
# Single variable
var = variables[0]
for entity in entities_list:
bindings.append({var: entity})
else:
# Multiple variables - simplified approach
for entity in entities_list:
binding = {}
for var in variables:
binding[var] = entity
bindings.append(binding)
return bindings[:100] # Limit to prevent explosion
def _apply_binding(self, expression: str, binding: Dict[str, str]) -> str:
"""Apply variable binding to an expression"""
result = expression
for var, value in binding.items():
result = result.replace(var, value)
return result
def _conclusion_exists(self, conclusion: str) -> bool:
"""Check if a conclusion already exists as a fact"""
# Parse conclusion to extract predicate and arguments
match = re.match(r'(\w+)\((.*)\)', conclusion)
if match:
predicate = match.group(1)
args_str = match.group(2)
args = [arg.strip() for arg in args_str.split(",")]
return self.kb._fact_exists(predicate, args)
return False
def _create_fact_from_conclusion(self, conclusion: str, confidence: float, source: str) -> Optional[SymbolicFact]:
"""Create a SymbolicFact from a conclusion string"""
match = re.match(r'(\w+)\((.*)\)', conclusion)
if match:
predicate = match.group(1)
args_str = match.group(2)
args = [arg.strip() for arg in args_str.split(",")]
fact_id = f"derived_{len(self.kb.facts)}"
return SymbolicFact(
fact_id=fact_id,
predicate=predicate,
arguments=args,
truth_value=True,
confidence=confidence,
source=source,
timestamp=datetime.now().isoformat(),
metadata={'derived': True}
)
return None
class NeuroSymbolicCyberAI:
"""Complete Neuro-Symbolic AI system for cybersecurity"""
def __init__(self, input_dim: int = 100, database_path: str = "neurosymbolic.db"):
self.input_dim = input_dim
self.database_path = database_path
self.logger = logging.getLogger(__name__)
# Initialize components
self.knowledge_base = SymbolicKnowledgeBase()
self.symbolic_reasoner = SymbolicReasoner(self.knowledge_base)
self.neural_integrator = NeuralSymbolicIntegrator(input_dim)
# Device setup
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.neural_integrator.to(self.device)
# Training setup
self.optimizer = torch.optim.Adam(self.neural_integrator.parameters(), lr=1e-4)
# Concept mapping
self.concept_to_idx = {}
self.idx_to_concept = {}
self._build_concept_mapping()
# Initialize database
self._init_database()
def _build_concept_mapping(self):
"""Build mapping between concepts and indices"""
concepts = [
# Network concepts
'external_connection', 'port_scan', 'large_data_transfer', 'network_activity',
'suspicious_activity', 'encrypted_communication', 'c2_domain',
# System concepts
'unknown_process', 'file_modification', 'system_file', 'privileged_account',
'admin_account', 'failed_login', 'multiple_failed_logins',
# Security events
'potential_intrusion', 'reconnaissance', 'potential_exfiltration',
'suspicious_process', 'potential_malware', 'malware_communication',
'suspicious_access', 'brute_force_attempt', 'insider_threat',
# Attack stages
'initial_compromise', 'lateral_movement', 'credential_theft',
'vulnerability_exploit', 'mission_completion', 'data_access',
# Response actions
'alert_soc', 'block_traffic', 'lock_account'
]
for i, concept in enumerate(concepts):
self.concept_to_idx[concept] = i
self.idx_to_concept[i] = concept
def _init_database(self):
"""Initialize SQLite database"""
with sqlite3.connect(self.database_path) as conn:
conn.execute("""
CREATE TABLE IF NOT EXISTS inference_sessions (
id INTEGER PRIMARY KEY AUTOINCREMENT,
session_id TEXT NOT NULL,
neural_input BLOB,
symbolic_facts TEXT,
inference_steps TEXT,
conclusions TEXT,
explanation TEXT,
confidence_score REAL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
conn.execute("""
CREATE TABLE IF NOT EXISTS rule_performance (
id INTEGER PRIMARY KEY AUTOINCREMENT,
rule_id TEXT NOT NULL,
usage_count INTEGER DEFAULT 0,
success_count INTEGER DEFAULT 0,
avg_confidence REAL DEFAULT 0.0,
last_used TIMESTAMP,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
conn.execute("""
CREATE TABLE IF NOT EXISTS concept_activations (
id INTEGER PRIMARY KEY AUTOINCREMENT,
session_id TEXT NOT NULL,
concept_name TEXT NOT NULL,
activation_score REAL NOT NULL,
neural_confidence REAL,
symbolic_confidence REAL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
def add_observations(self, observations: List[Dict[str, Any]]):
"""Add observed facts to the knowledge base"""
for obs in observations:
fact = SymbolicFact(
fact_id=f"obs_{len(self.knowledge_base.facts)}",
predicate=obs['predicate'],
arguments=obs['arguments'],
truth_value=obs.get('truth_value', True),
confidence=obs.get('confidence', 1.0),
source="observation",
timestamp=datetime.now().isoformat(),
metadata=obs.get('metadata', {})
)
self.knowledge_base.add_fact(fact)
def analyze_with_explanation(self, neural_input: np.ndarray,
observations: List[Dict[str, Any]] = None) -> Dict[str, Any]:
"""Perform neuro-symbolic analysis with detailed explanation"""
session_id = f"session_{datetime.now().strftime('%Y%m%d_%H%M%S_%f')}"
# Add new observations
if observations:
self.add_observations(observations)
# Neural processing
neural_tensor = torch.FloatTensor(neural_input).unsqueeze(0).to(self.device)
# Extract symbolic concepts from current facts
active_concepts = []
for fact in self.knowledge_base.facts.values():
if fact.predicate in self.concept_to_idx:
active_concepts.append(self.concept_to_idx[fact.predicate])
concept_tensor = torch.LongTensor(active_concepts).to(self.device) if active_concepts else None
concept_weights = torch.ones(len(active_concepts)).to(self.device) if active_concepts else None
if concept_tensor is not None:
concept_tensor = concept_tensor.unsqueeze(0)
concept_weights = concept_weights.unsqueeze(0)
# Forward pass through neural integrator
self.neural_integrator.eval()
with torch.no_grad():
neural_output = self.neural_integrator(
neural_tensor, concept_tensor, concept_weights
)
# Symbolic reasoning
inference_steps = self.symbolic_reasoner.forward_chaining()
# Extract results
concept_activations = neural_output['concept_activations'].cpu().numpy()[0]
rule_confidences = neural_output['rule_confidences'].cpu().numpy()[0]
# Get top activated concepts
top_concepts = []
for i, activation in enumerate(concept_activations):
if i < len(self.idx_to_concept) and activation > 0.1:
top_concepts.append({
'concept': self.idx_to_concept[i],
'activation': float(activation),
'source': 'neural'
})
top_concepts.sort(key=lambda x: x['activation'], reverse=True)
# Get conclusions from symbolic reasoning
conclusions = []
for step in inference_steps:
conclusions.append({
'conclusion': step.conclusion_derived,
'rule_used': step.rule_applied,
'confidence': step.confidence,
'source': 'symbolic'
})
# Generate explanation
explanation = self._generate_explanation(
neural_output, inference_steps, top_concepts, conclusions
)
# Calculate overall confidence
neural_confidence = float(np.mean(concept_activations[concept_activations > 0.1])) if len(concept_activations[concept_activations > 0.1]) > 0 else 0.0
symbolic_confidence = float(np.mean([step.confidence for step in inference_steps])) if inference_steps else 0.0
overall_confidence = (neural_confidence + symbolic_confidence) / 2
# Prepare results
analysis_result = {
'session_id': session_id,
'timestamp': datetime.now().isoformat(),
'neural_analysis': {
'top_concepts': top_concepts[:10],
'confidence': neural_confidence
},
'symbolic_analysis': {
'inference_steps': len(inference_steps),
'conclusions': conclusions,
'confidence': symbolic_confidence
},
'integrated_analysis': {
'overall_confidence': overall_confidence,
'explanation': explanation,
'recommendations': self._generate_recommendations(conclusions, top_concepts)
},
'metadata': {
'facts_in_kb': len(self.knowledge_base.facts),
'rules_applied': len(set(step.rule_applied for step in inference_steps)),
'processing_time': 'simulated'
}
}
# Save to database
self._save_analysis(session_id, analysis_result, neural_input)
return analysis_result
def _generate_explanation(self, neural_output: Dict[str, torch.Tensor],
inference_steps: List[InferenceStep],
top_concepts: List[Dict[str, Any]],
conclusions: List[Dict[str, Any]]) -> str:
"""Generate human-readable explanation"""
explanation_parts = []
# Neural analysis explanation
if top_concepts:
explanation_parts.append("Neural Analysis:")
explanation_parts.append(f" The neural network identified {len(top_concepts)} relevant cybersecurity concepts:")
for concept in top_concepts[:5]:
explanation_parts.append(f" - {concept['concept']}: {concept['activation']:.2f} confidence")
explanation_parts.append("")
# Symbolic reasoning explanation
if inference_steps:
explanation_parts.append("Symbolic Reasoning:")
explanation_parts.append(f" Applied {len(inference_steps)} inference rules to derive new knowledge:")
for step in inference_steps[:3]:
rule = self.knowledge_base.rules[step.rule_applied]
explanation_parts.append(f" - Applied rule {step.rule_applied}: {rule.premise} โ†’ {rule.conclusion}")
explanation_parts.append(f" Derived: {step.conclusion_derived} (confidence: {step.confidence:.2f})")
if len(inference_steps) > 3:
explanation_parts.append(f" ... and {len(inference_steps) - 3} more inferences")
explanation_parts.append("")
# Conclusions explanation
if conclusions:
explanation_parts.append("Key Findings:")
for conclusion in conclusions[:3]:
explanation_parts.append(f" - {conclusion['conclusion']} (confidence: {conclusion['confidence']:.2f})")
explanation_parts.append("")
# Integration explanation
explanation_parts.append("Integration:")
explanation_parts.append(" The neuro-symbolic system combined neural pattern recognition")
explanation_parts.append(" with symbolic logical reasoning to provide explainable conclusions")
explanation_parts.append(" based on both learned patterns and expert-defined rules.")
return "\n".join(explanation_parts)
def _generate_recommendations(self, conclusions: List[Dict[str, Any]],
top_concepts: List[Dict[str, Any]]) -> List[str]:
"""Generate actionable recommendations"""
recommendations = []
# Based on conclusions
threat_indicators = [c for c in conclusions if 'potential' in c['conclusion'] or 'suspicious' in c['conclusion']]
if threat_indicators:
recommendations.append("๐Ÿšจ Potential security threats detected - immediate investigation recommended")
for threat in threat_indicators[:3]:
if 'intrusion' in threat['conclusion']:
recommendations.append(" - Implement network isolation measures")
recommendations.append(" - Review network access logs")
elif 'malware' in threat['conclusion']:
recommendations.append(" - Perform full system scan")
recommendations.append(" - Isolate affected systems")
elif 'exfiltration' in threat['conclusion']:
recommendations.append(" - Monitor outbound network traffic")
recommendations.append(" - Review data access patterns")
# Based on neural concepts
high_risk_concepts = [c for c in top_concepts if c['activation'] > 0.7]
if high_risk_concepts:
recommendations.append("๐Ÿ” High-confidence neural detections require attention:")
for concept in high_risk_concepts[:2]:
recommendations.append(f" - Investigate {concept['concept']} (confidence: {concept['activation']:.2f})")
# General recommendations
if not recommendations:
recommendations.append("โœ… No immediate threats detected")
recommendations.append(" - Continue normal monitoring")
recommendations.append(" - Regular security updates recommended")
return recommendations
def _save_analysis(self, session_id: str, analysis_result: Dict[str, Any], neural_input: np.ndarray):
"""Save analysis results to database"""
with sqlite3.connect(self.database_path) as conn:
# Save main analysis
conn.execute(
"""INSERT INTO inference_sessions
(session_id, neural_input, symbolic_facts, inference_steps, conclusions, explanation, confidence_score)
VALUES (?, ?, ?, ?, ?, ?, ?)""",
(session_id, pickle.dumps(neural_input),
json.dumps([asdict(fact) for fact in self.knowledge_base.facts.values()]),
json.dumps(analysis_result['symbolic_analysis']),
json.dumps(analysis_result['symbolic_analysis']['conclusions']),
analysis_result['integrated_analysis']['explanation'],
analysis_result['integrated_analysis']['overall_confidence'])
)
# Save concept activations
for concept in analysis_result['neural_analysis']['top_concepts']:
conn.execute(
"""INSERT INTO concept_activations
(session_id, concept_name, activation_score, neural_confidence)
VALUES (?, ?, ?, ?)""",
(session_id, concept['concept'], concept['activation'],
analysis_result['neural_analysis']['confidence'])
)
def get_knowledge_base_summary(self) -> Dict[str, Any]:
"""Get summary of current knowledge base"""
# Fact statistics
fact_stats = {
'total_facts': len(self.knowledge_base.facts),
'predicates': len(self.knowledge_base.predicates),
'entities': len(self.knowledge_base.entities)
}
# Rule statistics
rule_stats = {
'total_rules': len(self.knowledge_base.rules),
'rule_usage': {rule.rule_id: rule.usage_count for rule in self.knowledge_base.rules.values()},
'rule_success': {rule.rule_id: rule.success_count for rule in self.knowledge_base.rules.values()}
}
# Recent inference history
recent_inferences = self.symbolic_reasoner.inference_history[-10:]
return {
'fact_statistics': fact_stats,
'rule_statistics': rule_stats,
'recent_inferences': [asdict(inf) for inf in recent_inferences],
'predicates': list(self.knowledge_base.predicates),
'entities': list(self.knowledge_base.entities)
}
# Example usage and testing
if __name__ == "__main__":
print("๐Ÿง ๐Ÿ”— Neuro-Symbolic AI for Cybersecurity Testing:")
print("=" * 60)
# Initialize the system
neurosymbolic_ai = NeuroSymbolicCyberAI(input_dim=50)
print(f" Initialized neuro-symbolic system")
print(f" Knowledge base: {len(neurosymbolic_ai.knowledge_base.facts)} facts, {len(neurosymbolic_ai.knowledge_base.rules)} rules")
# Test knowledge base summary
print("\n๐Ÿ“š Knowledge base summary:")
kb_summary = neurosymbolic_ai.get_knowledge_base_summary()
print(f" Total facts: {kb_summary['fact_statistics']['total_facts']}")
print(f" Total rules: {kb_summary['rule_statistics']['total_rules']}")
print(f" Predicates: {kb_summary['fact_statistics']['predicates']}")
print(f" Sample predicates: {list(kb_summary['predicates'])[:5]}")
# Add sample observations
print("\n๐Ÿ” Adding sample cybersecurity observations...")
sample_observations = [
{
'predicate': 'external_connection',
'arguments': ['host_001'],
'confidence': 0.9,
'metadata': {'ip': '192.168.1.10', 'dest': '8.8.8.8'}
},
{
'predicate': 'suspicious_activity',
'arguments': ['host_001'],
'confidence': 0.7,
'metadata': {'activity_type': 'unusual_traffic'}
},
{
'predicate': 'port_scan',
'arguments': ['host_002'],
'confidence': 0.8,
'metadata': {'ports_scanned': [22, 80, 443]}
},
{
'predicate': 'failed_login',
'arguments': ['host_002'],
'confidence': 0.9,
'metadata': {'attempts': 5, 'user': 'admin'}
},
{
'predicate': 'large_data_transfer',
'arguments': ['host_003'],
'confidence': 0.6,
'metadata': {'bytes_transferred': 10485760}
}
]
neurosymbolic_ai.add_observations(sample_observations)
print(f" Added {len(sample_observations)} observations")
# Generate sample neural input
print("\n๐Ÿง  Generating sample neural input...")
neural_input = np.random.rand(50)
neural_input[:10] = np.array([0.8, 0.3, 0.9, 0.7, 0.2, 0.6, 0.4, 0.8, 0.1, 0.5]) # Simulate network features
# Perform neuro-symbolic analysis
print("\n๐Ÿ”„ Performing neuro-symbolic analysis...")
analysis_result = neurosymbolic_ai.analyze_with_explanation(neural_input)
# Display results
print(f"\n๐Ÿ“Š Analysis Results (Session: {analysis_result['session_id']}):")
print(f" Overall confidence: {analysis_result['integrated_analysis']['overall_confidence']:.3f}")
print(f"\n๐Ÿง  Neural Analysis:")
print(f" Confidence: {analysis_result['neural_analysis']['confidence']:.3f}")
print(f" Top concepts detected:")
for concept in analysis_result['neural_analysis']['top_concepts'][:5]:
print(f" - {concept['concept']}: {concept['activation']:.3f}")
print(f"\n๐Ÿ”— Symbolic Analysis:")
print(f" Inference steps: {analysis_result['symbolic_analysis']['inference_steps']}")
print(f" Confidence: {analysis_result['symbolic_analysis']['confidence']:.3f}")
print(f" Conclusions derived:")
for conclusion in analysis_result['symbolic_analysis']['conclusions'][:3]:
print(f" - {conclusion['conclusion']} (conf: {conclusion['confidence']:.3f})")
print(f"\n๐Ÿ’ก Recommendations:")
for rec in analysis_result['integrated_analysis']['recommendations'][:5]:
print(f" {rec}")
print(f"\n๐Ÿ“ Explanation Preview:")
explanation_lines = analysis_result['integrated_analysis']['explanation'].split('\n')[:10]
for line in explanation_lines:
print(f" {line}")
if len(analysis_result['integrated_analysis']['explanation'].split('\n')) > 10:
print(f" ... (full explanation available)")
# Test another analysis with different observations
print("\n๐Ÿ”„ Testing with different scenario...")
additional_observations = [
{
'predicate': 'unknown_process',
'arguments': ['host_004'],
'confidence': 0.8,
'metadata': {'process_name': 'suspicious.exe'}
},
{
'predicate': 'network_activity',
'arguments': ['host_004'],
'confidence': 0.9,
'metadata': {'connections': 15}
},
{
'predicate': 'off_hours_access',
'arguments': ['user_admin'],
'confidence': 0.7,
'metadata': {'time': '02:30:00'}
},
{
'predicate': 'privileged_account',
'arguments': ['user_admin'],
'confidence': 1.0,
'metadata': {'role': 'administrator'}
}
]
analysis_result_2 = neurosymbolic_ai.analyze_with_explanation(
neural_input * 0.8, additional_observations
)
print(f" New conclusions:")
for conclusion in analysis_result_2['symbolic_analysis']['conclusions'][:3]:
print(f" - {conclusion['conclusion']} (conf: {conclusion['confidence']:.3f})")
# Final knowledge base summary
print("\n๐Ÿ“š Final knowledge base status:")
final_summary = neurosymbolic_ai.get_knowledge_base_summary()
print(f" Total facts: {final_summary['fact_statistics']['total_facts']}")
print(f" Recent inferences: {len(final_summary['recent_inferences'])}")
if final_summary['recent_inferences']:
print(f" Last inference: {final_summary['recent_inferences'][-1]['conclusion_derived']}")
print("\nโœ… Neuro-Symbolic AI system implemented and tested")
print(f" Database: {neurosymbolic_ai.database_path}")
print(f" Concept vocabulary: {len(neurosymbolic_ai.concept_to_idx)} concepts")
print(f" Architecture: Neural-Symbolic Integration with Attention-based Fusion")
print(f" Capabilities: Explainable AI with logical reasoning and neural pattern recognition")