Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import tensorflow as tf | |
| from tensorflow.keras.preprocessing import image | |
| import numpy as np | |
| import os | |
| # Load the model | |
| MODEL_PATH = "/home/petpooja-504/Desktop/cnn/final_model.keras" | |
| model = tf.keras.models.load_model(MODEL_PATH) | |
| # Define the class names directly for the Food-101 dataset | |
| CLASS_NAMES = [ | |
| 'apple_pie', 'baby_back_ribs', 'baklava', 'beef_carpaccio', 'beef_tartare', 'beet_salad', 'beignets', | |
| 'bibimbap', 'bread_pudding', 'breakfast_burrito', 'bruschetta', 'caesar_salad', 'cannoli', 'caprese_salad', | |
| 'carrot_cake', 'ceviche', 'cheese_plate', 'cheesecake', 'chicken_curry', 'chicken_quesadilla', | |
| 'chicken_wings', 'chocolate_cake', 'chocolate_mousse', 'churros', 'clam_chowder', 'club_sandwich', | |
| 'crab_cakes', 'creme_brulee', 'croque_madame', 'cup_cakes', 'deviled_eggs', 'donuts', 'dumplings', | |
| 'edamame', 'eggs_benedict', 'escargots', 'falafel', 'filet_mignon', 'fish_and_chips', 'foie_gras', | |
| 'french_fries', 'french_onion_soup', 'french_toast', 'fried_calamari', 'fried_rice', 'frozen_yogurt', | |
| 'garlic_bread', 'gnocchi', 'greek_salad', 'grilled_cheese_sandwich', 'grilled_salmon', 'guacamole', | |
| 'gyoza', 'hamburger', 'hot_and_sour_soup', 'hot_dog', 'huevos_rancheros', 'hummus', 'ice_cream', | |
| 'lasagna', 'lobster_bisque', 'lobster_roll_sandwich', 'macaroni_and_cheese', 'macarons', 'miso_soup', | |
| 'mussels', 'nachos', 'omelette', 'onion_rings', 'oysters', 'pad_thai', 'paella', 'pancakes', 'panna_cotta', | |
| 'peking_duck', 'pho', 'pizza', 'pork_chop', 'poutine', 'prime_rib', 'pulled_pork_sandwich', 'ramen', | |
| 'ravioli', 'red_velvet_cake', 'risotto', 'samosa', 'sashimi', 'scallops', 'seaweed_salad', 'shrimp_and_grits', | |
| 'spaghetti_bolognese', 'spaghetti_carbonara', 'spring_rolls', 'steak', 'strawberry_shortcake', 'sushi', | |
| 'tacos', 'takoyaki', 'tiramisu', 'tuna_tartare', 'waffles' | |
| ] | |
| # Define the function to predict the image | |
| # Define the function to predict the image | |
| def predict_image(img_path): | |
| # Load and preprocess the image | |
| img = image.load_img(img_path, target_size=(224, 224)) # Resize to match model's expected input size | |
| img_array = image.img_to_array(img) # Convert image to array | |
| img_array = np.expand_dims(img_array, axis=0) # Add batch dimension | |
| img_array = img_array / 255.0 # Normalize the image as done during training | |
| # Make prediction | |
| predictions = model.predict(img_array) | |
| # Get prediction probabilities | |
| prediction_probs = predictions[0] # Prediction probabilities | |
| predicted_class_index = np.argmax(prediction_probs) | |
| predicted_class = CLASS_NAMES[predicted_class_index] # Fetch the class name | |
| return predicted_class | |
| # Streamlit UI components | |
| st.title("Food-101 Classification Model") | |
| st.write("Upload an image of food to predict its class.") | |
| # Upload image | |
| uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
| if uploaded_file is not None: | |
| # Display the uploaded image | |
| st.image(uploaded_file, caption="Uploaded Image", use_column_width=True) | |
| # Save the image temporarily | |
| img_path = "uploaded_image.jpg" | |
| with open(img_path, "wb") as f: | |
| f.write(uploaded_file.getbuffer()) | |
| # Make prediction | |
| predicted_class = predict_image(img_path) | |
| # Display the predicted class | |
| st.write(f"Predicted Class: {predicted_class}") | |