Spaces:
Sleeping
Sleeping
import gradio as gr | |
import cv2 | |
import numpy as np | |
from tensorflow.keras.models import load_model | |
import mediapipe as mp | |
model = load_model('gesture_model.h5') | |
actions = ['I', 'help', 'need', 'sleep', 'angry', 'urgent'] | |
threshold = 0.8 | |
mp_holistic = mp.solutions.holistic | |
def extract_keypoints(results): | |
pose = np.array([[res.x, res.y, res.z] for res in results.pose_landmarks.landmark]).flatten() if results.pose_landmarks else np.zeros(33 * 3) | |
lh = np.array([[res.x, res.y, res.z] for res in results.left_hand_landmarks.landmark]).flatten() if results.left_hand_landmarks else np.zeros(21 * 3) | |
rh = np.array([[res.x, res.y, res.z] for res in results.right_hand_landmarks.landmark]).flatten() if results.right_hand_landmarks else np.zeros(21 * 3) | |
return np.concatenate([pose, lh, rh]) | |
def predict_gesture(video_path): | |
cap = cv2.VideoCapture(video_path) | |
sequence = [] | |
sentence = [] | |
with mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic: | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
results = holistic.process(image) | |
keypoints = extract_keypoints(results) | |
sequence.append(keypoints) | |
sequence = sequence[-30:] | |
if len(sequence) == 30: | |
res = model.predict(np.expand_dims(sequence, axis=0))[0] | |
if res[np.argmax(res)] > threshold: | |
action = actions[np.argmax(res)] | |
if not sentence or sentence[-1] != action: | |
sentence.append(action) | |
cap.release() | |
return ' '.join(sentence) | |
iface = gr.Interface( | |
fn=predict_gesture, | |
inputs=gr.Video(label="Upload your gesture video"), | |
outputs="text", | |
title="Gesture Recognition AI", | |
description="Upload a short gesture video (e.g., showing 'I need help') and get the recognized sentence." | |
) | |
iface.launch() | |