vtony's picture
Upload agent.py
db7e060 verified
raw
history blame
5.13 kB
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client
# Load environment variables
load_dotenv()
# --- Math Tools ---
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract b from a."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide a by b, error on zero."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Compute a mod b."""
return a % b
# --- Browser Tools ---
@tool
def wiki_search(query: str) -> dict:
"""Search Wikipedia and return up to 2 documents."""
docs = WikipediaLoader(query=query, load_max_docs=2).load()
results = [f"<Document source=\"{d.metadata['source']}\" page=\"{d.metadata.get('page','')}\"/>\n{d.page_content}" for d in docs]
return {"wiki_results": "\n---\n".join(results)}
@tool
def web_search(query: str) -> dict:
"""Search Tavily and return up to 3 results."""
docs = TavilySearchResults(max_results=3).invoke(query=query)
results = [f"<Document source=\"{d.metadata['source']}\" page=\"{d.metadata.get('page','')}\"/>\n{d.page_content}" for d in docs]
return {"web_results": "\n---\n".join(results)}
@tool
def arxiv_search(query: str) -> dict:
"""Search Arxiv and return up to 3 docs."""
docs = ArxivLoader(query=query, load_max_docs=3).load()
results = [f"<Document source=\"{d.metadata['source']}\" page=\"{d.metadata.get('page','')}\"/>\n{d.page_content[:1000]}" for d in docs]
return {"arxiv_results": "\n---\n".join(results)}
# --- Load system prompt ---
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# --- System message ---
sys_msg = SystemMessage(content=system_prompt)
# --- Retriever Tool ---
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
supabase = create_client(os.getenv("SUPABASE_URL"), os.getenv("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
client=supabase,
embedding=embeddings, table_name="documents",
query_name="match_documents_langchain")
retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(
search_type="similarity",
search_kwargs={"k": 5}
),
name="Question Search",
description="A tool to retrieve similar questions from the vector store."
)
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
web_search,
arxiv_search,
]
# --- Graph Builder ---
def build_graph(provider: str = "huggingface"):
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
repo_id = "Qwen/Qwen2.5-Coder-32B-Instruct"
),
)
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
# Define no def assistant(state: MessagesState): """Assistant node"""
return {"messages [ [llm_with_tools.invoke(state["messages"])]}se]}
# Retriever returns AIMessage def retriever(state: MessagesState):
"""Retriever node"""
similar_question = vector_store.similarity_search(state["messages"][0].content)
print('Similar questions:')
print(similar_question)
if len(similar_question) > 0:
example_msg = HumanMessage(
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
ntent}]}
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
return {"messages": [sys_msg] + state["m
# Add nodesessages"]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools",
# Add edgesToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
)
builder.add_edge("tools", "assistant")ever")
# Compile graph
return builder.compile()