Spaces:
Sleeping
Sleeping
import os | |
from dotenv import load_dotenv | |
from langgraph.graph import START, StateGraph, MessagesState | |
from langgraph.prebuilt import tools_condition | |
from langgraph.prebuilt import ToolNode | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader | |
from langchain_community.vectorstores import SupabaseVectorStore | |
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage | |
from langchain_core.tools import tool | |
from langchain.tools.retriever import create_retriever_tool | |
from supabase.client import Client, create_client | |
# Load environment variables | |
load_dotenv() | |
# --- Math Tools --- | |
def multiply(a: int, b: int) -> int: | |
"""Multiply two integers.""" | |
return a * b | |
def add(a: int, b: int) -> int: | |
"""Add two integers.""" | |
return a + b | |
def subtract(a: int, b: int) -> int: | |
"""Subtract b from a.""" | |
return a - b | |
def divide(a: int, b: int) -> float: | |
"""Divide a by b, error on zero.""" | |
if b == 0: | |
raise ValueError("Cannot divide by zero.") | |
return a / b | |
def modulus(a: int, b: int) -> int: | |
"""Compute a mod b.""" | |
return a % b | |
# --- Browser Tools --- | |
def wiki_search(query: str) -> dict: | |
"""Search Wikipedia and return up to 2 documents.""" | |
docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
results = [f"<Document source=\"{d.metadata['source']}\" page=\"{d.metadata.get('page','')}\"/>\n{d.page_content}" for d in docs] | |
return {"wiki_results": "\n---\n".join(results)} | |
def web_search(query: str) -> dict: | |
"""Search Tavily and return up to 3 results.""" | |
docs = TavilySearchResults(max_results=3).invoke(query=query) | |
results = [f"<Document source=\"{d.metadata['source']}\" page=\"{d.metadata.get('page','')}\"/>\n{d.page_content}" for d in docs] | |
return {"web_results": "\n---\n".join(results)} | |
def arxiv_search(query: str) -> dict: | |
"""Search Arxiv and return up to 3 docs.""" | |
docs = ArxivLoader(query=query, load_max_docs=3).load() | |
results = [f"<Document source=\"{d.metadata['source']}\" page=\"{d.metadata.get('page','')}\"/>\n{d.page_content[:1000]}" for d in docs] | |
return {"arxiv_results": "\n---\n".join(results)} | |
# --- Load system prompt --- | |
with open("system_prompt.txt", "r", encoding="utf-8") as f: | |
system_prompt = f.read() | |
# --- System message --- | |
sys_msg = SystemMessage(content=system_prompt) | |
# --- Retriever Tool --- | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
supabase = create_client(os.getenv("SUPABASE_URL"), os.getenv("SUPABASE_SERVICE_KEY")) | |
vector_store = SupabaseVectorStore( | |
client=supabase, | |
embedding=embeddings, table_name="documents", | |
query_name="match_documents_langchain") | |
retriever_tool = create_retriever_tool( | |
retriever=vector_store.as_retriever( | |
search_type="similarity", | |
search_kwargs={"k": 5} | |
), | |
name="Question Search", | |
description="A tool to retrieve similar questions from the vector store." | |
) | |
tools = [ | |
multiply, | |
add, | |
subtract, | |
divide, | |
modulus, | |
wiki_search, | |
web_search, | |
arxiv_search, | |
] | |
# --- Graph Builder --- | |
def build_graph(provider: str = "huggingface"): | |
llm = ChatHuggingFace( | |
llm=HuggingFaceEndpoint( | |
repo_id = "Qwen/Qwen2.5-Coder-32B-Instruct" | |
), | |
) | |
# Bind tools to LLM | |
llm_with_tools = llm.bind_tools(tools) | |
# Define no def assistant(state: MessagesState): """Assistant node""" | |
return {"messages [ [llm_with_tools.invoke(state["messages"])]}se]} | |
# Retriever returns AIMessage def retriever(state: MessagesState): | |
"""Retriever node""" | |
similar_question = vector_store.similarity_search(state["messages"][0].content) | |
print('Similar questions:') | |
print(similar_question) | |
if len(similar_question) > 0: | |
example_msg = HumanMessage( | |
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}", | |
ntent}]} | |
return {"messages": [sys_msg] + state["messages"] + [example_msg]} | |
return {"messages": [sys_msg] + state["m | |
# Add nodesessages"]} | |
builder = StateGraph(MessagesState) | |
builder.add_node("retriever", retriever) | |
builder.add_node("assistant", assistant) | |
builder.add_node("tools", | |
# Add edgesToolNode(tools)) | |
builder.add_edge(START, "retriever") | |
builder.add_edge("retriever", "assistant") | |
builder.add_conditional_edges( | |
"assistant", | |
tools_condition, | |
) | |
builder.add_edge("tools", "assistant")ever") | |
# Compile graph | |
return builder.compile() | |