File size: 13,588 Bytes
0f8ddfb
07a5d20
126fff1
 
81dbe3d
e59d9f1
785d3cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e18767
 
17836b2
8e18767
 
 
a26308f
17836b2
 
8e18767
9c1b1da
8e18767
 
 
 
 
 
 
a26308f
9c1b1da
54f693c
0f8ddfb
cc35c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f8ddfb
17836b2
0f8ddfb
cc35c28
 
0f8ddfb
 
 
ff2b00a
 
cc35c28
 
 
 
 
 
ff2b00a
1e12d5e
cc35c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff2b00a
07a5d20
2d22901
07a5d20
 
 
 
 
 
 
181eb38
126fff1
56ff5cb
 
 
 
07a5d20
56ff5cb
 
 
126fff1
2d22901
 
 
 
 
56ff5cb
2d22901
 
 
 
56ff5cb
2d22901
 
 
 
 
 
 
 
 
56ff5cb
2d22901
 
 
181eb38
54f693c
81f62ec
0f8ddfb
17836b2
126fff1
54f693c
126fff1
54f693c
126fff1
 
 
 
 
 
 
 
55b708c
54f693c
 
126fff1
1e12d5e
54f693c
1e12d5e
 
 
54f693c
07a5d20
05bc090
 
 
1e12d5e
785d3cd
 
 
 
 
 
 
 
87ee564
 
 
 
 
 
 
 
 
 
126fff1
54f693c
126fff1
54f693c
 
 
 
 
 
81dbe3d
54f693c
 
126fff1
 
54f693c
 
 
 
 
 
126fff1
 
54f693c
 
 
 
0f8ddfb
54f693c
20981db
54f693c
785d3cd
54f693c
785d3cd
 
 
f37dc6c
5dc1952
785d3cd
f37dc6c
785d3cd
f37dc6c
 
 
 
785d3cd
54f693c
785d3cd
 
 
 
54f693c
785d3cd
 
17836b2
54f693c
 
 
 
6a96058
785d3cd
 
54f693c
785d3cd
 
4f6586f
 
 
 
 
 
 
 
 
 
 
 
785d3cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import streamlit as st
from PIL import Image, ImageFilter
import numpy as np
import pandas as pd
from streamlit_cropper import st_cropper

# Mutation site headers removed 3614,
mutation_site_headers_actual = [
    3244, 3297, 3350, 3399, 3455, 3509, 3562, 
    3665, 3720, 3773, 3824, 3879, 3933, 3985, 4039,
    4089, 4145, 4190, 4245, 4298, 4349, 4402, 4455,
    4510, 4561, 4615, 4668, 4720, 4773, 4828, 4882
]

# Thresholds for each mutation site removed 3614: 0.091557752,
thresholds_actual = pd.Series({
    3244: 1.094293328, 3297: 0.924916122, 3350: 0.664586629, 3399: 0.91573613,
    3455: 1.300869714, 3509: 1.821975901, 3562: 1.178862418, 
    3665: 0.298697327, 3720: 0.58379781, 3773: 0.891088481, 3824: 1.145509641,
    3879: 0.81833191, 3933: 2.93084335, 3985: 1.593758847, 4039: 0.966055013,
    4089: 1.465671338, 4145: 0.30309335, 4190: 1.321615138, 4245: 1.709752495,
    4298: 0.868534701, 4349: 1.222907645, 4402: 0.58873557, 4455: 1.185522985,
    4510: 1.266797682, 4561: 1.109913024, 4615: 1.181106084, 4668: 1.408533949,
    4720: 0.714151142, 4773: 1.471959437, 4828: 0.95879943, 4882: 1.464503885
})

# Mutation site headers reordered: 4402 to 3244, 4882 to 4455
mutation_site_headers = [
    4402, 4349, 4298, 4245, 4190, 4145, 4089, 4039,
    3985, 3933, 3879, 3824, 3773, 3720, 3665,
    3562, 3509, 3455, 3399, 3350, 3297, 3244,  # 1–23
    4882, 4828, 4773, 4720, 4668, 4615, 4561, 4510, 4455   # 24–32
]

# Thresholds reordered accordingly
thresholds = pd.Series({
    4402: 0.58873557, 4349: 1.222907645, 4298: 0.868534701, 4245: 1.709752495,
    4190: 1.321615138, 4145: 0.30309335, 4089: 1.465671338, 4039: 0.966055013,
    3985: 1.593758847, 3933: 2.93084335, 3879: 0.81833191, 3824: 1.145509641,
    3773: 0.891088481, 3720: 0.58379781, 3665: 0.298697327, 
    3562: 1.178862418, 3509: 1.821975901, 3455: 1.300869714, 3399: 0.91573613,
    3350: 0.664586629, 3297: 0.924916122, 3244: 1.094293328,
    4882: 1.464503885, 4828: 0.95879943, 4773: 1.471959437, 4720: 0.714151142,
    4668: 1.408533949, 4615: 1.181106084, 4561: 1.109913024, 4510: 1.266797682, 4455: 1.185522985
})
# === Utility functions ===

# Voyager ASCII 6-bit conversion table
voyager_table = {
    i: ch for i, ch in enumerate([
        ' ', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I',
        'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S',
        'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '0', '1', '2',
        '3', '4', '5', '6', '7', '8', '9', '.', '(', ')',
        '+', '-', '*', '/', '=', '$', '!', ':', '%', '"',
        '#', '@', '\'', '?', '&'
    ])
}
reverse_voyager_table = {v: k for k, v in voyager_table.items()}

# === Utility functions ===

def string_to_binary_labels(s: str) -> list[int]:
    bits = []
    for char in s:
        val = reverse_voyager_table.get(char.upper(), 0)
        char_bits = [(val >> bit) & 1 for bit in range(5, -1, -1)]
        bits.extend(char_bits)
    return bits

def binary_labels_to_string(bits: list[int]) -> str:
    chars = []
    for i in range(0, len(bits), 6):
        chunk = bits[i:i+6]
        if len(chunk) < 6:
            chunk += [0] * (6 - len(chunk))
        val = sum(b << (5 - j) for j, b in enumerate(chunk))
        chars.append(voyager_table.get(val, '?'))
    return ''.join(chars)
    
# def string_to_binary_labels(s: str) -> list[int]:
#     bits = []
#     for char in s:
#         ascii_code = ord(char)
#         char_bits = [(ascii_code >> bit) & 1 for bit in range(7, -1, -1)]
#         bits.extend(char_bits)
#     return bits

# def binary_labels_to_string(bits: list[int]) -> str:
#     chars = []
#     for i in range(0, len(bits), 8):
#         byte = bits[i:i+8]
#         if len(byte) < 8:
#             byte += [0] * (8 - len(byte))
#         ascii_val = sum(b << (7 - j) for j, b in enumerate(byte))
#         chars.append(chr(ascii_val))
#     return ''.join(chars)
    
def clean_image(img: Image.Image, min_size: int = 256) -> Image.Image:
    img = img.convert("RGB")
    if img.width < min_size or img.height < min_size:
        img = img.resize((min_size, min_size))
    img = img.filter(ImageFilter.GaussianBlur(radius=1))
    return img

def image_to_binary_labels_rgb(img: Image.Image, max_pixels: int = 256) -> list[int]:
    img = clean_image(img)
    img.thumbnail((int(np.sqrt(max_pixels)), int(np.sqrt(max_pixels))))
    img_array = np.array(img)
    flat_pixels = img_array.reshape(-1, 3)

    bits = []
    for pixel in flat_pixels:
        for channel in pixel:
            channel_bits = [(channel >> bit) & 1 for bit in range(7, -1, -1)]
            bits.extend(channel_bits)
    return bits

def binary_labels_to_rgb_image(binary_labels: list[int], width: int = None, height: int = None) -> Image.Image:
    total_pixels = len(binary_labels) // 24
    if width is None or height is None:
        side = int(np.ceil(np.sqrt(total_pixels)))
        width = height = side

    needed_pixels = width * height
    needed_bits = needed_pixels * 24
    if len(binary_labels) < needed_bits:
        binary_labels += [0] * (needed_bits - len(binary_labels))

    pixels = []
    for i in range(0, needed_bits, 24):
        r_bits = binary_labels[i:i+8]
        g_bits = binary_labels[i+8:i+16]
        b_bits = binary_labels[i+16:i+24]
        r = sum(b << (7-j) for j, b in enumerate(r_bits))
        g = sum(b << (7-j) for j, b in enumerate(g_bits))
        b = sum(b << (7-j) for j, b in enumerate(b_bits))
        pixels.append((r, g, b))

    array = np.array(pixels, dtype=np.uint8).reshape((height, width, 3))
    img = Image.fromarray(array, mode='RGB')
    return img

# === Streamlit App ===

st.title("ASCII & Binary Label Converter")
tab1, tab2, tab3 = st.tabs(["Text to Binary Labels", "Image to Binary Labels", "EF β†’ Binary"])

# Tab 1: Text to Binary
with tab1:
    user_input = st.text_input("Enter text", value="DNA")
    if user_input:
        ascii_codes = [ord(c) for c in user_input]
        binary_labels = string_to_binary_labels(user_input)

        st.subheader("ASCII Codes")
        st.write(ascii_codes)

        st.subheader("Binary Labels per Character")
        grouped = [binary_labels[i:i+6] for i in range(0, len(binary_labels), 6)]
        for i, bits in enumerate(grouped):
            st.write(f"'{user_input[i]}' β†’ {bits}")

        st.subheader("Binary Labels (31-bit groups)")
        groups = []
        for i in range(0, len(binary_labels), 31):
            group = binary_labels[i:i+31]
            group += [0] * (31 - len(group))
            groups.append(group + [sum(group)])

        df = pd.DataFrame(groups, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"])
        st.dataframe(df)
        st.download_button("Download as CSV", df.to_csv(index=False), "text_32_binary_labels.csv")

        # Additional table with ascending mutation site headers (3244 to 4455)
        ascending_headers = sorted([h for h in mutation_site_headers if h <= 4455])
        df_sorted = df[[str(h) for h in ascending_headers if str(h) in df.columns]]
        st.subheader("Binary Labels (Ascending Order 3244 β†’ 4455)")
        st.dataframe(df_sorted)
        st.download_button("Download Ascending Order CSV", df_sorted.to_csv(index=False), "text_binary_labels_ascending.csv")


        # st.subheader("Binary Labels (27-bit groups)")
        # groups = []
        # for i in range(0, len(binary_labels), 27):
        #     group = binary_labels[i:i+27]
        #     group += [0] * (27 - len(group))
        #     groups.append(group + [sum(group)])

        # df_27 = pd.DataFrame(groups, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"])
        # st.dataframe(df_27)
        # st.download_button("Download as CSV", df_27.to_csv(index=False), "text_27_binary_labels.csv")

# Tab 2: Image to Binary
with tab2:
    uploaded = st.file_uploader("Upload an image (jpg/png)", type=["jpg", "jpeg", "png"])
    if uploaded:
        img = Image.open(uploaded)
        st.image(img, caption="Original", use_column_width=True)
        cropped = st_cropper(img, realtime_update=True, box_color="blue", aspect_ratio=None)
        st.image(cropped, caption="Cropped", use_column_width=True)

        max_pixels = st.slider("Max pixels to encode", 32, 1024, 256, 32)
        binary_labels = image_to_binary_labels_rgb(cropped, max_pixels=max_pixels)

        st.subheader("Binary Labels from Image")
        groups = []
        for i in range(0, len(binary_labels), 32):
            group = binary_labels[i:i+32]
            group += [0] * (32 - len(group))
            groups.append(group + [sum(group)])
        df = pd.DataFrame(groups, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"])
        st.dataframe(df)

        st.subheader("Reconstructed Image")
        recon = binary_labels_to_rgb_image(binary_labels)
        st.image(recon, caption="Reconstructed", use_column_width=True)
        st.download_button("Download CSV", df.to_csv(index=False), "image_binary_labels.csv")

# Tab 3: EF β†’ Binary
with tab3:
    st.write("Upload an Editing Frequency CSV or enter manually:")
    st.write("**Note:** Please upload CSV files **without column headers**, in ascending order from 3244 to 4455.")
    ef_file = st.file_uploader("Upload EF CSV", type=["csv"], key="ef")

    ascending_input_headers = sorted([h for h in mutation_site_headers if 3244 <= h <= 4455])

    if ef_file:
        ef_df = pd.read_csv(ef_file, header=None)
        ef_df.columns = [str(site) for site in ascending_input_headers]
    else:
        ef_df = pd.DataFrame(columns=[str(site) for site in ascending_input_headers])

    edited_df = st.data_editor(ef_df, num_rows="dynamic")

    if st.button("Convert to Binary Labels"):
        # Use ascending headers to create binary first
        binary_part = pd.DataFrame()
        for col in ascending_input_headers:
            col_str = str(col)
            threshold = thresholds[col]
            binary_part[col_str] = (edited_df[col_str].astype(float) >= threshold).astype(int)

        # Rearranged for output: custom order from mutation_site_headers
        binary_reordered = binary_part[[str(h) for h in mutation_site_headers if str(h) in binary_part.columns]]

        def color_binary(val):
            if val == 1: return "background-color: lightgreen"
            if val == 0: return "background-color: lightcoral"
            return ""

        st.subheader("Binary Labels (Reordered 4402β†’3244, 4882β†’4455)")
        styled = binary_reordered.style.applymap(color_binary)
        st.dataframe(styled)
        st.download_button("Download CSV", binary_reordered.to_csv(index=False), "ef_binary_labels.csv")

        # === NEW: Continuous decoding across rows ===
        all_bits = binary_reordered.values.flatten().tolist()
        decoded_string = binary_labels_to_string(all_bits)
        st.subheader("Decoded String (continuous across rows)")
        st.write(decoded_string)

        # Optional: ascending order output
        binary_ascending = binary_part[[str(h) for h in ascending_input_headers if str(h) in binary_part.columns]]
        st.subheader("Binary Labels (Ascending 3244β†’4455)")
        st.dataframe(binary_ascending)
        st.download_button("Download Ascending Order CSV", binary_ascending.to_csv(index=False), "ef_binary_labels_ascending.csv")


# # Tab 3: EF β†’ Binary
# with tab3:
#     st.write("Upload an Editing Frequency CSV or enter manually:")
#     st.write("**Note:** Please upload CSV files **without column headers**. Just the 31 editing frequencies per row.")
#     ef_file = st.file_uploader("Upload EF CSV", type=["csv"], key="ef")
    
#     if ef_file:
#         # Read CSV without headers and assign mutation site headers
#         ef_df = pd.read_csv(ef_file, header=None)
#         ef_df.columns = [str(site) for site in mutation_site_headers]
#     else:
#         ef_df = pd.DataFrame(columns=[str(site) for site in mutation_site_headers])


#     edited_df = st.data_editor(ef_df, num_rows="dynamic")

#     if st.button("Convert to Binary Labels"):
#         int_map = {str(k): k for k in thresholds.index}
#         matching_cols = [col for col in edited_df.columns if col in int_map]

#         binary_part = pd.DataFrame()
#         for col in matching_cols:
#             col_threshold = thresholds[int_map[col]]
#             binary_part[col] = (edited_df[col].astype(float) >= col_threshold).astype(int)

#         non_binary_part = edited_df.drop(columns=matching_cols, errors='ignore')
#         binary_df = pd.concat([non_binary_part, binary_part], axis=1)

#         def color_binary(val):
#             if val == 1: return "background-color: lightgreen"
#             if val == 0: return "background-color: lightcoral"
#             return ""

#         st.subheader("Binary Labels")
#         styled = binary_df.style.applymap(color_binary, subset=matching_cols)
#         st.dataframe(styled)
#         st.download_button("Download CSV", binary_df.to_csv(index=False), "ef_binary_labels.csv")

#         # Convert to bitstrings and strings
#         binary_strings = []
#         decoded_strings = []
#         for _, row in binary_part.iterrows():
#             bitlist = row.values.tolist()
#             bitstring = ''.join(str(b) for b in bitlist)
#             binary_strings.append(bitstring)
#             decoded_strings.append(binary_labels_to_string(bitlist))

#         st.subheader("Binary as Bitstrings")
#         for b in binary_strings:
#             st.code(b)

#         st.subheader("Decoded Voyager Strings")
#         for s in decoded_strings:
#             st.write(s)