Spaces:
Sleeping
Sleeping
File size: 9,145 Bytes
0f8ddfb 07a5d20 126fff1 81dbe3d e59d9f1 54f693c 17836b2 54f693c 9c1b1da 54f693c 9c1b1da 17836b2 54f693c 0f8ddfb cc35c28 0f8ddfb 17836b2 0f8ddfb cc35c28 0f8ddfb ff2b00a cc35c28 ff2b00a cc35c28 ff2b00a 07a5d20 2d22901 07a5d20 181eb38 126fff1 56ff5cb 07a5d20 56ff5cb 126fff1 2d22901 56ff5cb 2d22901 56ff5cb 2d22901 56ff5cb 2d22901 181eb38 54f693c 81f62ec 0f8ddfb 17836b2 126fff1 54f693c 126fff1 54f693c 126fff1 55b708c 54f693c 126fff1 54f693c 07a5d20 54f693c 126fff1 54f693c 126fff1 54f693c 81dbe3d 54f693c 126fff1 54f693c 126fff1 54f693c 0f8ddfb 54f693c f37dc6c 54f693c c9b5fc3 54f693c 5dc1952 f37dc6c 5dc1952 f37dc6c 5dc1952 f37dc6c 54f693c 04c0614 54f693c 81f62ec 17836b2 54f693c 6a96058 54f693c 05d848e cc35c28 05d848e cc35c28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import streamlit as st
from PIL import Image, ImageFilter
import numpy as np
import pandas as pd
from streamlit_cropper import st_cropper
# Mutation site headers
mutation_site_headers = [
3244, 3297, 3350, 3399, 3455, 3509, 3562, 3614,
3665, 3720, 3773, 3824, 3879, 3933, 3985, 4039,
4089, 4145, 4190, 4245, 4298, 4349, 4402, 4455,
4510, 4561, 4615, 4668, 4720, 4773, 4828, 4882
]
# Thresholds for each mutation site
thresholds = pd.Series({
3244: 1.094293328, 3297: 0.924916122, 3350: 0.664586629, 3399: 0.91573613,
3455: 1.300869714, 3509: 1.821975901, 3562: 1.178862418, 3614: 0.091557752,
3665: 0.298697327, 3720: 0.58379781, 3773: 0.891088481, 3824: 1.145509641,
3879: 0.81833191, 3933: 2.93084335, 3985: 1.593758847, 4039: 0.966055013,
4089: 1.465671338, 4145: 0.30309335, 4190: 1.321615138, 4245: 1.709752495,
4298: 0.868534701, 4349: 1.222907645, 4402: 0.58873557, 4455: 1.185522985,
4510: 1.266797682, 4561: 1.109913024, 4615: 1.181106084, 4668: 1.408533949,
4720: 0.714151142, 4773: 1.471959437, 4828: 0.95879943, 4882: 1.464503885
})
# === Utility functions ===
# Voyager ASCII 6-bit conversion table
voyager_table = {
i: ch for i, ch in enumerate([
' ', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I',
'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S',
'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '0', '1', '2',
'3', '4', '5', '6', '7', '8', '9', '.', '(', ')',
'+', '-', '*', '/', '=', '$', '!', ':', '%', '"',
'#', '@', '\'', '?', '&'
])
}
reverse_voyager_table = {v: k for k, v in voyager_table.items()}
# === Utility functions ===
def string_to_binary_labels(s: str) -> list[int]:
bits = []
for char in s:
val = reverse_voyager_table.get(char.upper(), 0)
char_bits = [(val >> bit) & 1 for bit in range(5, -1, -1)]
bits.extend(char_bits)
return bits
def binary_labels_to_string(bits: list[int]) -> str:
chars = []
for i in range(0, len(bits), 6):
chunk = bits[i:i+6]
if len(chunk) < 6:
chunk += [0] * (6 - len(chunk))
val = sum(b << (5 - j) for j, b in enumerate(chunk))
chars.append(voyager_table.get(val, '?'))
return ''.join(chars)
# def string_to_binary_labels(s: str) -> list[int]:
# bits = []
# for char in s:
# ascii_code = ord(char)
# char_bits = [(ascii_code >> bit) & 1 for bit in range(7, -1, -1)]
# bits.extend(char_bits)
# return bits
# def binary_labels_to_string(bits: list[int]) -> str:
# chars = []
# for i in range(0, len(bits), 8):
# byte = bits[i:i+8]
# if len(byte) < 8:
# byte += [0] * (8 - len(byte))
# ascii_val = sum(b << (7 - j) for j, b in enumerate(byte))
# chars.append(chr(ascii_val))
# return ''.join(chars)
def clean_image(img: Image.Image, min_size: int = 256) -> Image.Image:
img = img.convert("RGB")
if img.width < min_size or img.height < min_size:
img = img.resize((min_size, min_size))
img = img.filter(ImageFilter.GaussianBlur(radius=1))
return img
def image_to_binary_labels_rgb(img: Image.Image, max_pixels: int = 256) -> list[int]:
img = clean_image(img)
img.thumbnail((int(np.sqrt(max_pixels)), int(np.sqrt(max_pixels))))
img_array = np.array(img)
flat_pixels = img_array.reshape(-1, 3)
bits = []
for pixel in flat_pixels:
for channel in pixel:
channel_bits = [(channel >> bit) & 1 for bit in range(7, -1, -1)]
bits.extend(channel_bits)
return bits
def binary_labels_to_rgb_image(binary_labels: list[int], width: int = None, height: int = None) -> Image.Image:
total_pixels = len(binary_labels) // 24
if width is None or height is None:
side = int(np.ceil(np.sqrt(total_pixels)))
width = height = side
needed_pixels = width * height
needed_bits = needed_pixels * 24
if len(binary_labels) < needed_bits:
binary_labels += [0] * (needed_bits - len(binary_labels))
pixels = []
for i in range(0, needed_bits, 24):
r_bits = binary_labels[i:i+8]
g_bits = binary_labels[i+8:i+16]
b_bits = binary_labels[i+16:i+24]
r = sum(b << (7-j) for j, b in enumerate(r_bits))
g = sum(b << (7-j) for j, b in enumerate(g_bits))
b = sum(b << (7-j) for j, b in enumerate(b_bits))
pixels.append((r, g, b))
array = np.array(pixels, dtype=np.uint8).reshape((height, width, 3))
img = Image.fromarray(array, mode='RGB')
return img
# === Streamlit App ===
st.title("ASCII & Binary Label Converter")
tab1, tab2, tab3 = st.tabs(["Text to Binary Labels", "Image to Binary Labels", "EF → Binary"])
# Tab 1: Text to Binary
with tab1:
user_input = st.text_input("Enter text", value="DNA")
if user_input:
ascii_codes = [ord(c) for c in user_input]
binary_labels = string_to_binary_labels(user_input)
st.subheader("ASCII Codes")
st.write(ascii_codes)
st.subheader("Binary Labels per Character")
grouped = [binary_labels[i:i+6] for i in range(0, len(binary_labels), 6)]
for i, bits in enumerate(grouped):
st.write(f"'{user_input[i]}' → {bits}")
st.subheader("Binary Labels (32-bit groups)")
groups = []
for i in range(0, len(binary_labels), 32):
group = binary_labels[i:i+32]
group += [0] * (32 - len(group))
groups.append(group + [sum(group)])
df = pd.DataFrame(groups, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"])
st.dataframe(df)
st.download_button("Download as CSV", df.to_csv(index=False), "text_binary_labels.csv")
# Tab 2: Image to Binary
with tab2:
uploaded = st.file_uploader("Upload an image (jpg/png)", type=["jpg", "jpeg", "png"])
if uploaded:
img = Image.open(uploaded)
st.image(img, caption="Original", use_column_width=True)
cropped = st_cropper(img, realtime_update=True, box_color="blue", aspect_ratio=None)
st.image(cropped, caption="Cropped", use_column_width=True)
max_pixels = st.slider("Max pixels to encode", 32, 1024, 256, 32)
binary_labels = image_to_binary_labels_rgb(cropped, max_pixels=max_pixels)
st.subheader("Binary Labels from Image")
groups = []
for i in range(0, len(binary_labels), 32):
group = binary_labels[i:i+32]
group += [0] * (32 - len(group))
groups.append(group + [sum(group)])
df = pd.DataFrame(groups, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"])
st.dataframe(df)
st.subheader("Reconstructed Image")
recon = binary_labels_to_rgb_image(binary_labels)
st.image(recon, caption="Reconstructed", use_column_width=True)
st.download_button("Download CSV", df.to_csv(index=False), "image_binary_labels.csv")
# Tab 3: EF → Binary
with tab3:
st.write("Upload an Editing Frequency CSV or enter manually:")
st.write("**Note:** Please upload CSV files **without column headers**. Just the 32 editing frequencies per row.")
ef_file = st.file_uploader("Upload EF CSV", type=["csv"], key="ef")
if ef_file:
# Read CSV without headers and assign mutation site headers
ef_df = pd.read_csv(ef_file, header=None)
ef_df.columns = [str(site) for site in mutation_site_headers]
else:
ef_df = pd.DataFrame(columns=[str(site) for site in mutation_site_headers])
edited_df = st.data_editor(ef_df, num_rows="dynamic")
if st.button("Convert to Binary Labels"):
int_map = {str(k): k for k in thresholds.index}
matching_cols = [col for col in edited_df.columns if col in int_map]
binary_part = pd.DataFrame()
for col in matching_cols:
col_threshold = thresholds[int_map[col]]
binary_part[col] = (edited_df[col].astype(float) >= col_threshold).astype(int)
non_binary_part = edited_df.drop(columns=matching_cols, errors='ignore')
binary_df = pd.concat([non_binary_part, binary_part], axis=1)
def color_binary(val):
if val == 1: return "background-color: lightgreen"
if val == 0: return "background-color: lightcoral"
return ""
st.subheader("Binary Labels")
styled = binary_df.style.applymap(color_binary, subset=matching_cols)
st.dataframe(styled)
st.download_button("Download CSV", binary_df.to_csv(index=False), "ef_binary_labels.csv")
# Convert to bitstrings and strings
binary_strings = []
decoded_strings = []
for _, row in binary_part.iterrows():
bitlist = row.values.tolist()
bitstring = ''.join(str(b) for b in bitlist)
binary_strings.append(bitstring)
decoded_strings.append(binary_labels_to_string(bitlist))
st.subheader("Binary as Bitstrings")
for b in binary_strings:
st.code(b)
st.subheader("Decoded Voyager Strings")
for s in decoded_strings:
st.write(s)
|