File size: 9,145 Bytes
0f8ddfb
07a5d20
126fff1
 
81dbe3d
e59d9f1
54f693c
17836b2
 
 
 
 
 
 
54f693c
9c1b1da
54f693c
 
 
 
 
 
 
 
9c1b1da
17836b2
54f693c
0f8ddfb
cc35c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f8ddfb
17836b2
0f8ddfb
cc35c28
 
0f8ddfb
 
 
ff2b00a
 
cc35c28
 
 
 
 
 
ff2b00a
cc35c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff2b00a
07a5d20
2d22901
07a5d20
 
 
 
 
 
 
181eb38
126fff1
56ff5cb
 
 
 
07a5d20
56ff5cb
 
 
126fff1
2d22901
 
 
 
 
56ff5cb
2d22901
 
 
 
56ff5cb
2d22901
 
 
 
 
 
 
 
 
56ff5cb
2d22901
 
 
181eb38
54f693c
81f62ec
0f8ddfb
17836b2
126fff1
54f693c
126fff1
54f693c
126fff1
 
 
 
 
 
 
 
55b708c
54f693c
 
126fff1
 
54f693c
 
 
 
 
07a5d20
54f693c
 
 
126fff1
54f693c
126fff1
54f693c
 
 
 
 
 
81dbe3d
54f693c
 
126fff1
 
54f693c
 
 
 
 
 
126fff1
 
54f693c
 
 
 
0f8ddfb
54f693c
f37dc6c
54f693c
c9b5fc3
54f693c
5dc1952
f37dc6c
5dc1952
 
 
f37dc6c
5dc1952
 
f37dc6c
 
 
 
54f693c
 
04c0614
54f693c
 
 
 
 
 
81f62ec
17836b2
54f693c
 
 
 
6a96058
54f693c
 
 
 
05d848e
 
 
 
 
 
 
 
 
 
 
cc35c28
05d848e
 
cc35c28
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import streamlit as st
from PIL import Image, ImageFilter
import numpy as np
import pandas as pd
from streamlit_cropper import st_cropper

# Mutation site headers
mutation_site_headers = [
    3244, 3297, 3350, 3399, 3455, 3509, 3562, 3614,
    3665, 3720, 3773, 3824, 3879, 3933, 3985, 4039,
    4089, 4145, 4190, 4245, 4298, 4349, 4402, 4455,
    4510, 4561, 4615, 4668, 4720, 4773, 4828, 4882
]

# Thresholds for each mutation site
thresholds = pd.Series({
    3244: 1.094293328, 3297: 0.924916122, 3350: 0.664586629, 3399: 0.91573613,
    3455: 1.300869714, 3509: 1.821975901, 3562: 1.178862418, 3614: 0.091557752,
    3665: 0.298697327, 3720: 0.58379781, 3773: 0.891088481, 3824: 1.145509641,
    3879: 0.81833191, 3933: 2.93084335, 3985: 1.593758847, 4039: 0.966055013,
    4089: 1.465671338, 4145: 0.30309335, 4190: 1.321615138, 4245: 1.709752495,
    4298: 0.868534701, 4349: 1.222907645, 4402: 0.58873557, 4455: 1.185522985,
    4510: 1.266797682, 4561: 1.109913024, 4615: 1.181106084, 4668: 1.408533949,
    4720: 0.714151142, 4773: 1.471959437, 4828: 0.95879943, 4882: 1.464503885
})

# === Utility functions ===

# Voyager ASCII 6-bit conversion table
voyager_table = {
    i: ch for i, ch in enumerate([
        ' ', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I',
        'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S',
        'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '0', '1', '2',
        '3', '4', '5', '6', '7', '8', '9', '.', '(', ')',
        '+', '-', '*', '/', '=', '$', '!', ':', '%', '"',
        '#', '@', '\'', '?', '&'
    ])
}
reverse_voyager_table = {v: k for k, v in voyager_table.items()}

# === Utility functions ===

def string_to_binary_labels(s: str) -> list[int]:
    bits = []
    for char in s:
        val = reverse_voyager_table.get(char.upper(), 0)
        char_bits = [(val >> bit) & 1 for bit in range(5, -1, -1)]
        bits.extend(char_bits)
    return bits

def binary_labels_to_string(bits: list[int]) -> str:
    chars = []
    for i in range(0, len(bits), 6):
        chunk = bits[i:i+6]
        if len(chunk) < 6:
            chunk += [0] * (6 - len(chunk))
        val = sum(b << (5 - j) for j, b in enumerate(chunk))
        chars.append(voyager_table.get(val, '?'))
    return ''.join(chars)
# def string_to_binary_labels(s: str) -> list[int]:
#     bits = []
#     for char in s:
#         ascii_code = ord(char)
#         char_bits = [(ascii_code >> bit) & 1 for bit in range(7, -1, -1)]
#         bits.extend(char_bits)
#     return bits

# def binary_labels_to_string(bits: list[int]) -> str:
#     chars = []
#     for i in range(0, len(bits), 8):
#         byte = bits[i:i+8]
#         if len(byte) < 8:
#             byte += [0] * (8 - len(byte))
#         ascii_val = sum(b << (7 - j) for j, b in enumerate(byte))
#         chars.append(chr(ascii_val))
#     return ''.join(chars)
    
def clean_image(img: Image.Image, min_size: int = 256) -> Image.Image:
    img = img.convert("RGB")
    if img.width < min_size or img.height < min_size:
        img = img.resize((min_size, min_size))
    img = img.filter(ImageFilter.GaussianBlur(radius=1))
    return img

def image_to_binary_labels_rgb(img: Image.Image, max_pixels: int = 256) -> list[int]:
    img = clean_image(img)
    img.thumbnail((int(np.sqrt(max_pixels)), int(np.sqrt(max_pixels))))
    img_array = np.array(img)
    flat_pixels = img_array.reshape(-1, 3)

    bits = []
    for pixel in flat_pixels:
        for channel in pixel:
            channel_bits = [(channel >> bit) & 1 for bit in range(7, -1, -1)]
            bits.extend(channel_bits)
    return bits

def binary_labels_to_rgb_image(binary_labels: list[int], width: int = None, height: int = None) -> Image.Image:
    total_pixels = len(binary_labels) // 24
    if width is None or height is None:
        side = int(np.ceil(np.sqrt(total_pixels)))
        width = height = side

    needed_pixels = width * height
    needed_bits = needed_pixels * 24
    if len(binary_labels) < needed_bits:
        binary_labels += [0] * (needed_bits - len(binary_labels))

    pixels = []
    for i in range(0, needed_bits, 24):
        r_bits = binary_labels[i:i+8]
        g_bits = binary_labels[i+8:i+16]
        b_bits = binary_labels[i+16:i+24]
        r = sum(b << (7-j) for j, b in enumerate(r_bits))
        g = sum(b << (7-j) for j, b in enumerate(g_bits))
        b = sum(b << (7-j) for j, b in enumerate(b_bits))
        pixels.append((r, g, b))

    array = np.array(pixels, dtype=np.uint8).reshape((height, width, 3))
    img = Image.fromarray(array, mode='RGB')
    return img

# === Streamlit App ===

st.title("ASCII & Binary Label Converter")
tab1, tab2, tab3 = st.tabs(["Text to Binary Labels", "Image to Binary Labels", "EF → Binary"])

# Tab 1: Text to Binary
with tab1:
    user_input = st.text_input("Enter text", value="DNA")
    if user_input:
        ascii_codes = [ord(c) for c in user_input]
        binary_labels = string_to_binary_labels(user_input)

        st.subheader("ASCII Codes")
        st.write(ascii_codes)

        st.subheader("Binary Labels per Character")
        grouped = [binary_labels[i:i+6] for i in range(0, len(binary_labels), 6)]
        for i, bits in enumerate(grouped):
            st.write(f"'{user_input[i]}' → {bits}")

        st.subheader("Binary Labels (32-bit groups)")
        groups = []
        for i in range(0, len(binary_labels), 32):
            group = binary_labels[i:i+32]
            group += [0] * (32 - len(group))
            groups.append(group + [sum(group)])

        df = pd.DataFrame(groups, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"])
        st.dataframe(df)
        st.download_button("Download as CSV", df.to_csv(index=False), "text_binary_labels.csv")

# Tab 2: Image to Binary
with tab2:
    uploaded = st.file_uploader("Upload an image (jpg/png)", type=["jpg", "jpeg", "png"])
    if uploaded:
        img = Image.open(uploaded)
        st.image(img, caption="Original", use_column_width=True)
        cropped = st_cropper(img, realtime_update=True, box_color="blue", aspect_ratio=None)
        st.image(cropped, caption="Cropped", use_column_width=True)

        max_pixels = st.slider("Max pixels to encode", 32, 1024, 256, 32)
        binary_labels = image_to_binary_labels_rgb(cropped, max_pixels=max_pixels)

        st.subheader("Binary Labels from Image")
        groups = []
        for i in range(0, len(binary_labels), 32):
            group = binary_labels[i:i+32]
            group += [0] * (32 - len(group))
            groups.append(group + [sum(group)])
        df = pd.DataFrame(groups, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"])
        st.dataframe(df)

        st.subheader("Reconstructed Image")
        recon = binary_labels_to_rgb_image(binary_labels)
        st.image(recon, caption="Reconstructed", use_column_width=True)
        st.download_button("Download CSV", df.to_csv(index=False), "image_binary_labels.csv")

# Tab 3: EF → Binary
with tab3:
    st.write("Upload an Editing Frequency CSV or enter manually:")
    st.write("**Note:** Please upload CSV files **without column headers**. Just the 32 editing frequencies per row.")
    ef_file = st.file_uploader("Upload EF CSV", type=["csv"], key="ef")
    
    if ef_file:
        # Read CSV without headers and assign mutation site headers
        ef_df = pd.read_csv(ef_file, header=None)
        ef_df.columns = [str(site) for site in mutation_site_headers]
    else:
        ef_df = pd.DataFrame(columns=[str(site) for site in mutation_site_headers])


    edited_df = st.data_editor(ef_df, num_rows="dynamic")

    if st.button("Convert to Binary Labels"):
        int_map = {str(k): k for k in thresholds.index}
        matching_cols = [col for col in edited_df.columns if col in int_map]

        binary_part = pd.DataFrame()
        for col in matching_cols:
            col_threshold = thresholds[int_map[col]]
            binary_part[col] = (edited_df[col].astype(float) >= col_threshold).astype(int)

        non_binary_part = edited_df.drop(columns=matching_cols, errors='ignore')
        binary_df = pd.concat([non_binary_part, binary_part], axis=1)

        def color_binary(val):
            if val == 1: return "background-color: lightgreen"
            if val == 0: return "background-color: lightcoral"
            return ""

        st.subheader("Binary Labels")
        styled = binary_df.style.applymap(color_binary, subset=matching_cols)
        st.dataframe(styled)
        st.download_button("Download CSV", binary_df.to_csv(index=False), "ef_binary_labels.csv")

        # Convert to bitstrings and strings
        binary_strings = []
        decoded_strings = []
        for _, row in binary_part.iterrows():
            bitlist = row.values.tolist()
            bitstring = ''.join(str(b) for b in bitlist)
            binary_strings.append(bitstring)
            decoded_strings.append(binary_labels_to_string(bitlist))

        st.subheader("Binary as Bitstrings")
        for b in binary_strings:
            st.code(b)

        st.subheader("Decoded Voyager Strings")
        for s in decoded_strings:
            st.write(s)