File size: 19,888 Bytes
0f8ddfb
126fff1
 
e59d9f1
785d3cd
 
 
 
 
098acd8
785d3cd
 
 
41b3afa
 
 
 
 
 
 
 
785d3cd
8e18767
 
17836b2
8e18767
 
 
098acd8
17836b2
 
8e18767
223c1c6
 
54f693c
0f8ddfb
cc35c28
 
 
 
 
 
8ba360a
 
 
cc35c28
 
 
 
0f8ddfb
17836b2
0f8ddfb
cc35c28
 
0f8ddfb
 
 
ff2b00a
 
cc35c28
 
 
 
 
 
ff2b00a
223c1c6
181eb38
54f693c
81f62ec
0f8ddfb
af02fd2
126fff1
54f693c
126fff1
d34499f
126fff1
25c8ed3
126fff1
 
e36ad7a
 
126fff1
 
55b708c
54f693c
 
126fff1
1e12d5e
54f693c
1e12d5e
 
 
54f693c
07a5d20
05bc090
 
bce28b1
1e12d5e
223c1c6
02b7814
 
105cb3c
 
 
83f3047
223c1c6
785d3cd
bce28b1
785d3cd
1f5b7cf
 
84c642e
1f5b7cf
 
 
 
 
 
 
 
 
 
 
 
 
a1a3469
 
 
 
 
1f5b7cf
12bbf65
 
 
1f5b7cf
 
 
 
 
 
 
 
 
 
bce28b1
1f5b7cf
e36ad7a
 
 
aea317a
e36ad7a
0096c5b
 
 
 
 
e36ad7a
 
6aedc3c
 
 
e36ad7a
 
0096c5b
 
e36ad7a
 
 
 
 
 
 
 
 
 
 
223c1c6
33573cd
54f693c
223c1c6
54f693c
785d3cd
f37dc6c
5dc1952
223c1c6
f37dc6c
223c1c6
f37dc6c
 
 
c7df11e
54f693c
223c1c6
785d3cd
223c1c6
785d3cd
54f693c
785d3cd
17836b2
54f693c
 
 
 
6a96058
785d3cd
 
54f693c
bce28b1
785d3cd
4f6586f
 
 
 
 
223c1c6
08696fc
bce28b1
a33de8f
 
 
 
 
fc0d4a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6768117
fc0d4a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d34499f
610e01f
 
 
fc0d4a5
 
 
 
 
 
 
610e01f
fc0d4a5
 
 
 
 
 
 
 
 
 
bce28b1
fc0d4a5
 
 
 
 
bce28b1
fc0d4a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bce28b1
fc0d4a5
 
bce28b1
 
fc0d4a5
 
5217706
fc0d4a5
5217706
 
fc0d4a5
 
 
 
 
 
c7df11e
fc0d4a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bce28b1
fc0d4a5
 
 
 
 
 
 
 
bce28b1
fc0d4a5
 
 
 
 
 
af02fd2
 
9e336e0
af02fd2
9e336e0
 
 
af02fd2
9e336e0
 
 
 
 
 
 
 
 
af02fd2
9e336e0
 
 
af02fd2
9e336e0
 
 
af02fd2
9e336e0
 
 
af02fd2
9e336e0
af02fd2
9e336e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af02fd2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import streamlit as st
import numpy as np
import pandas as pd

# Mutation site headers removed 3614,
mutation_site_headers_actual = [
    3244, 3297, 3350, 3399, 3455, 3509, 3562, 
    3665, 3720, 3773, 3824, 3879, 3933, 3985, 4039,
    4089, 4145, 4190, 4245, 4298, 4349, 4402, 4455,
    4510, 4561, 4615, 4668, 4720, 4773, 4828, 4882
]
# Thresholds for each mutation site removed 3614: 0.091557752,
thresholds_actual = pd.Series({
    3244: 1.096910677, 3297: 0.923658795, 3350: 0.668939037, 3399: 0.914305214,
    3455: 1.297392984, 3509: 1.812636208, 3562: 1.185047484, 
    3665: 0.298007308, 3720: 0.58857544, 3773: 0.882561082, 3824: 1.149082617,
    3879: 0.816050702, 3933: 2.936517653, 3985: 1.597166791, 4039: 0.962108082,
    4089: 1.479783497, 4145: 0.305853225, 4190: 1.311869541, 4245: 1.707556905,
    4298: 0.875013076, 4349: 1.227704526, 4402: 0.593206446, 4455: 1.179633137,
    4510: 1.272477799, 4561: 1.293841573, 4615: 1.16821885, 4668: 1.40306,
    4720: 0.706530878, 4773: 1.483114072, 4828: 0.954939873, 4882: 1.47524328
})

# Mutation site headers reordered: 4402 to 3244, 4882 to 4455
mutation_site_headers = [
    4402, 4349, 4298, 4245, 4190, 4145, 4089, 4039,
    3985, 3933, 3879, 3824, 3773, 3720, 3665,
    3562, 3509, 3455, 3399, 3350, 3297, 3244,  # 1–23
    4882, 4828, 4773, 4720, 4668, 4615, 4561, 4510, 4455   # 24–32
]

# Thresholds reordered accordingly
thresholds = pd.Series({h: thresholds_actual[h] for h in mutation_site_headers})

# === Utility functions ===

# Voyager ASCII 6-bit conversion table
voyager_table = {
    i: ch for i, ch in enumerate([
        ' ', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I',
        'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S',
        'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '0', '1', '2',
        '3', '4', '5', '6', '7', '8', '9', '.', ',', '(', 
        ')','+', '-', '*', '/', '=', '$', '!', ':', '%', 
        '"', '#', '@', "'", '?', '&'
    ])
}
reverse_voyager_table = {v: k for k, v in voyager_table.items()}

def string_to_binary_labels(s: str) -> list[int]:
    bits = []
    for char in s:
        val = reverse_voyager_table.get(char.upper(), 0)
        char_bits = [(val >> bit) & 1 for bit in range(5, -1, -1)]
        bits.extend(char_bits)
    return bits

def binary_labels_to_string(bits: list[int]) -> str:
    chars = []
    for i in range(0, len(bits), 6):
        chunk = bits[i:i+6]
        if len(chunk) < 6:
            chunk += [0] * (6 - len(chunk))
        val = sum(b << (5 - j) for j, b in enumerate(chunk))
        chars.append(voyager_table.get(val, '?'))
    return ''.join(chars)


# === Streamlit App ===

st.title("ASCII & Binary Label Converter")
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Text to Binary Labels (31)", "EF β†’ Binary β†’ String (31)", "Text to Binary Labels (32)", "EF β†’ Binary (32)", "Binary β†’ String"])

# Tab 1: Text to Binary
with tab1:
    user_input = st.text_input("Enter text", value="DNA", key="input_text_31")
    if user_input:
        ascii_codes = [reverse_voyager_table.get(c.upper(), 0) for c in user_input]
        binary_labels = string_to_binary_labels(user_input)

        # st.subheader("Voyager ASCII Codes")
        # st.write(ascii_codes)

        st.subheader("Binary Labels per Character")
        grouped = [binary_labels[i:i+6] for i in range(0, len(binary_labels), 6)]
        for i, bits in enumerate(grouped):
            st.write(f"'{user_input[i]}' β†’ {bits}")

        st.subheader("Binary Labels (31-bit groups)")
        groups = []
        for i in range(0, len(binary_labels), 31):
            group = binary_labels[i:i+31]
            group += [0] * (31 - len(group))
            groups.append(group + [sum(group)])

        df = pd.DataFrame(groups, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"])
        st.dataframe(df)
        st.download_button("Download as CSV", df.to_csv(index=False), "text_31_binary_labels.csv", key="download_csv_tab1_31csv")

        ascending_headers = sorted(mutation_site_headers_actual)
        df_sorted = df[[str(h) for h in ascending_headers if str(h) in df.columns]].copy()
        
        if "3614" not in df_sorted.columns:
            idx = df_sorted.columns.get_loc("3562") + 1  # Insert after 3562
            df_sorted.insert(idx, "3614", 0)

        st.subheader("Binary Labels (Ascending Order 3244 β†’ 4882)")
        st.dataframe(df_sorted)
        st.download_button("Download Ascending Order CSV", df_sorted.to_csv(index=False), "text_binary_labels_ascending.csv", key="download_csv_tab1_ascend")

        # === Robot Preparation Script Generation ===
        st.subheader("Robot Preparation Script")
        robot_template = pd.read_csv("/home/user/app/Robot.csv", skiprows=3)
        robot_template.columns = ['Labware', 'Source', 'Labware_2', 'Destination', 'Volume', 'Tool', 'Name']

        # Add Sample numbers for well referencing
        df_sorted.insert(0, 'Sample', range(1, len(df_sorted)+1))

        # Step 1: Count the number of edited sites per row
        df_sorted['# donors'] = df_sorted.iloc[:, 1:].sum(axis=1)

        # Step 2: Calculate volume per donor (32 / # donors)
        df_sorted['volume donors (Β΅l)'] = 32 / df_sorted['# donors']

        # Step 3: Generate the robot script
        robot_script = []
        source_wells = robot_template['Source'].unique().tolist()
        if len(source_wells) < 32:
            source_wells += [f"Fake{i}" for i in range(32 - len(source_wells))]
        source_wells = source_wells[:32]


        st.write(f"Number of source wells: {len(source_wells)}")
        st.write(f"Number of binary columns: {len(df_sorted.columns[1:33])}")

        for i, col in enumerate(df_sorted.columns[1:33]):
            for row_idx, sample in df_sorted.iterrows():
                if sample[col] == 1:
                    source = source_wells[i]
                    dest = f"A{sample['Sample']}"
                    vol = round(sample['volume donors (Β΅l)'], 2)
                    robot_script.append({'Source': source, 'Destination': dest, 'Volume': vol})

        robot_script_df = pd.DataFrame(robot_script)
        st.dataframe(robot_script_df)
        st.download_button("Download Robot Script CSV", robot_script_df.to_csv(index=False), "robot_script.csv", key="download_csv_tab1_robot")

        # === Robot Preparation Script (Based on Ascending Order 3244 β†’ 4882) ===
        st.subheader("Robot Preparation Script (Based on Ascending Order 3244 β†’ 4882)")
        
        df_sorted_ascend =df[[str(h) for h in ascending_headers if str(h) in df.columns]].copy()
        
        # Only insert 'Sample' if it doesn't already exist
        if 'Sample' not in df_sorted_ascend.columns:
            df_sorted_ascend.insert(0, 'Sample', range(1, len(df_sorted_ascend)+1))
        
        # Recalculate donors and volume
        df_sorted_ascend['# donors'] = df_sorted_ascend.iloc[:, 1:].sum(axis=1)
        df_sorted_ascend['volume donors (Β΅l)'] = 32 / df_sorted_ascend['# donors']

        st.subheader("df_sorted_ascend")
        st.write(df_sorted_ascend)
        
        robot_script_ascend = []
        # Use the same 32 source wells
        for i, col in enumerate(df_sorted_ascend.columns[1:33]):
            for row_idx, sample in df_sorted_ascend.iterrows():
                if sample[col] == 1:
                    source = source_wells[i]
                    dest = f"A{sample['Sample']}"
                    vol = round(sample['volume donors (Β΅l)'], 2)
                    robot_script_ascend.append({'Source': source, 'Destination': dest, 'Volume': vol})
        
        robot_script_ascend_df = pd.DataFrame(robot_script_ascend)
        st.dataframe(robot_script_ascend_df)
        st.download_button("Download Ascending Robot Script CSV", robot_script_ascend_df.to_csv(index=False), "robot_script_ascending.csv", key="download_csv_tab1_robot_ascend")

# Tab 2: EF β†’ Binary
with tab2:
    st.write("Upload an Editing Frequency CSV or enter manually:")
    st.write("**Note:** Please upload CSV files **without column headers**, in ascending order from 3244 to 4882.")
    ef_file = st.file_uploader("Upload EF CSV", type=["csv"], key="ef")

    if ef_file:
        ef_df = pd.read_csv(ef_file, header=None)
        ef_df.columns = [str(site) for site in sorted(mutation_site_headers_actual)]
    else:
        ef_df = pd.DataFrame(columns=[str(site) for site in sorted(mutation_site_headers_actual)])

    edited_df = st.data_editor(ef_df, num_rows="dynamic")

    if st.button("Convert to Binary Labels", key="convert_button_tab2"):
        binary_part = pd.DataFrame()
        for col in sorted(mutation_site_headers_actual):
            col_str = str(col)
            threshold = thresholds_actual[col]
            binary_part[col_str] = (edited_df[col_str].astype(float) >= threshold).astype(int)

        binary_reordered = binary_part[[str(h) for h in mutation_site_headers if str(h) in binary_part.columns]]

        def color_binary(val):
            if val == 1: return "background-color: lightgreen"
            if val == 0: return "background-color: lightcoral"
            return ""

        st.subheader("Binary Labels (Reordered 4402β†’3244, 4882β†’4455)")
        styled = binary_reordered.style.applymap(color_binary)
        st.dataframe(styled)
        st.download_button("Download CSV", binary_reordered.to_csv(index=False), "ef_binary_labels.csv", key="download_csv_tab2_csv")

        all_bits = binary_reordered.values.flatten().tolist()
        decoded_string = binary_labels_to_string(all_bits)
        st.subheader("Decoded String (continuous across rows)")
        st.write(decoded_string)

        st.subheader("Binary Labels (Ascending 3244β†’4882)")
        st.dataframe(binary_part.style.applymap(color_binary))
        st.download_button("Download Ascending Order CSV", binary_part.to_csv(index=False), "ef_binary_labels_ascending.csv", key="download_csv_tab2_ascend")

        all_bits = binary_part.values.flatten().tolist()
        decoded_string = binary_labels_to_string(all_bits)
        st.subheader("Decoded String (continuous across rows)")
        st.write(decoded_string)


# Mutation site headers did not remove 3614,
mutation_site_headers_actual_3614 = [
    3244, 3297, 3350, 3399, 3455, 3509, 3562, 3614,
    3665, 3720, 3773, 3824, 3879, 3933, 3985, 4039,
    4089, 4145, 4190, 4245, 4298, 4349, 4402, 4455,
    4510, 4561, 4615, 4668, 4720, 4773, 4828, 4882
]
# Thresholds for each mutation site removed 3614: 0.091557752,
thresholds_actual_3614 = pd.Series({
    3244: 1.096910677, 3297: 0.923658795, 3350: 0.668939037, 3399: 0.914305214,
    3455: 1.297392984, 3509: 1.812636208, 3562: 1.185047484, 3614: 0.157969131375,
    3665: 0.298007308, 3720: 0.58857544, 3773: 0.882561082, 3824: 1.149082617,
    3879: 0.816050702, 3933: 2.936517653, 3985: 1.597166791, 4039: 0.962108082,
    4089: 1.479783497, 4145: 0.305853225, 4190: 1.311869541, 4245: 1.707556905,
    4298: 0.875013076, 4349: 1.227704526, 4402: 0.593206446, 4455: 1.179633137,
    4510: 1.272477799, 4561: 1.293841573, 4615: 1.16821885, 4668: 1.40306,
    4720: 0.706530878, 4773: 1.483114072, 4828: 0.954939873, 4882: 1.47524328
})

# Mutation site headers reordered: 4402 to 3244, 4882 to 4455
mutation_site_headers_3614 = [
    4402, 4349, 4298, 4245, 4190, 4145, 4089, 4039,
    3985, 3933, 3879, 3824, 3773, 3720, 3665, 3614,
    3562, 3509, 3455, 3399, 3350, 3297, 3244,  # 1–23
    4882, 4828, 4773, 4720, 4668, 4615, 4561, 4510, 4455   # 24–32
]

# Thresholds reordered accordingly
thresholds_3614 = pd.Series({h: thresholds_actual_3614[h] for h in mutation_site_headers_3614})

# === Utility functions ===

# Voyager ASCII 6-bit conversion table
voyager_table = {
    i: ch for i, ch in enumerate([
        ' ', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I',
        'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S',
        'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '0', '1', '2',
        '3', '4', '5', '6', '7', '8', '9', '.', '(', ')',
        '+', '-', '*', '/', '=', '$', '!', ':', '%', '"',
        '#', '@', '\'', '?', '&'
    ])
}
reverse_voyager_table = {v: k for k, v in voyager_table.items()}


# Tab 3: Text to Binary (32)
with tab3:
    user_input_32 = st.text_input("Enter text", value="DNA", key="input_text_32")
    if user_input_32:
        ascii_codes = [ord(c) for c in user_input_32]
        binary_labels = string_to_binary_labels(user_input_32)

        st.subheader("ASCII Codes")
        st.write(ascii_codes)

        st.subheader("Binary Labels per Character")
        grouped = [binary_labels[i:i+6] for i in range(0, len(binary_labels), 6)]
        for i, bits in enumerate(grouped):
            st.write(f"'{user_input_32[i]}' β†’ {bits}")

        st.subheader("Binary Labels (32-bit groups)")
        groups = []
        for i in range(0, len(binary_labels), 32):
            group = binary_labels[i:i+32]
            group += [0] * (32 - len(group))
            groups.append(group + [sum(group)])

        df = pd.DataFrame(groups, columns=[str(h) for h in mutation_site_headers_3614] + ["Edited Sites"])
        st.dataframe(df)
        st.download_button("Download as CSV", df.to_csv(index=False), "text_32_binary_labels.csv", key="download_csv_tab3_csv")

        ascending_headers = sorted(mutation_site_headers_actual_3614)
        df_sorted = df[[str(h) for h in ascending_headers if str(h) in df.columns]]
        st.subheader("Binary Labels (Ascending Order 3244 β†’ 4882)")
        st.dataframe(df_sorted)
        st.download_button("Download Ascending Order CSV", df_sorted.to_csv(index=False), "text_binary_labels_ascending.csv", key="download_csv_tab3_ascend")

        # === Robot Preparation Script Generation ===
        st.subheader("Robot Preparation Script")
        robot_template = pd.read_csv("/home/user/app/Robot.csv", skiprows=3)
        robot_template.columns = ['Labware', 'Source', 'Labware_2', 'Destination', 'Volume', 'Tool', 'Name']

        # Add Sample numbers for well referencing
        df_sorted.insert(0, 'Sample', range(1, len(df_sorted)+1))

        # Step 1: Count the number of edited sites per row
        df_sorted['# donors'] = df_sorted.iloc[:, 1:].sum(axis=1)

        # Step 2: Calculate volume per donor (32 / # donors)
        df_sorted['volume donors (Β΅l)'] = 32 / df_sorted['# donors']

        # Step 3: Generate the robot script
        robot_script = []
        source_wells = robot_template['Source'].unique().tolist()[:32]

        for i, col in enumerate(df_sorted.columns[1:33]):
            for row_idx, sample in df_sorted.iterrows():
                if sample[col] == 1:
                    source = source_wells[i]
                    dest = f"A{sample['Sample']}"
                    vol = round(sample['volume donors (Β΅l)'], 2)
                    robot_script.append({'Source': source, 'Destination': dest, 'Volume': vol})

        robot_script_df = pd.DataFrame(robot_script)
        st.dataframe(robot_script_df)
        st.download_button("Download Robot Script CSV", robot_script_df.to_csv(index=False), "robot_script.csv", key="download_csv_tab3_robot")


# Tab 4: EF β†’ Binary (32)
with tab4:
    st.write("Upload an Editing Frequency CSV or enter manually:")
    st.write("**Note:** Please upload CSV files **without column headers**, in ascending order from 3244 to 4882.")
    ef_file_2 = st.file_uploader("Upload EF CSV", type=["csv"], key="ef2")

    if ef_file_2:
        ef_df = pd.read_csv(ef_file_2, header=None)
        ef_df.columns = [str(site) for site in sorted(mutation_site_headers_actual_3614)]
    else:
        ef_df = pd.DataFrame(columns=[str(site) for site in sorted(mutation_site_headers_actual_3614)])

    edited_df = st.data_editor(ef_df, num_rows="dynamic")

    if st.button("Convert to Binary Labels", key="convert_button_tab4"):
        binary_part = pd.DataFrame()
        for col in sorted(mutation_site_headers_actual_3614):
            col_str = str(col)
            threshold = thresholds_actual_3614[col]
            binary_part[col_str] = (edited_df[col_str].astype(float) >= threshold).astype(int)

        binary_reordered = binary_part[[str(h) for h in mutation_site_headers_3614 if str(h) in binary_part.columns]]

        def color_binary(val):
            if val == 1: return "background-color: lightgreen"
            if val == 0: return "background-color: lightcoral"
            return ""

        st.subheader("Binary Labels (Reordered 4402β†’3244, 4882β†’4455)")
        styled = binary_reordered.style.applymap(color_binary)
        st.dataframe(styled)
        st.download_button("Download CSV", binary_reordered.to_csv(index=False), "ef_binary_labels.csv", key="download_csv_tab4_csv")

        all_bits = binary_reordered.values.flatten().tolist()
        decoded_string = binary_labels_to_string(all_bits)
        st.subheader("Decoded String (continuous across rows)")
        st.write(decoded_string)

        st.subheader("Binary Labels (Ascending 3244β†’4882)")
        st.dataframe(binary_part.style.applymap(color_binary))
        st.download_button("Download Ascending Order CSV", binary_part.to_csv(index=False), "ef_binary_labels_ascending.csv", key="download_csv_tab4_ascend")

        all_bits = binary_part.values.flatten().tolist()
        decoded_string = binary_labels_to_string(all_bits)
        st.subheader("Decoded String (continuous across rows)")
        st.write(decoded_string)

# Tab 5: Binary β†’ String
with tab5:
    st.header("Decode Binary Labels to String")

    st.subheader("πŸ”˜ Option 1: 32-bit Binary per Row")
    st.write("Upload CSV with 32 columns (0 or 1), no headers, from EF Binary format.")
    binary32_file = st.file_uploader("Upload 32-bit Binary CSV", type=["csv"], key="binary_32")

    if binary32_file:
        df_32 = pd.read_csv(binary32_file, header=None)
        if df_32.shape[1] != 32:
            st.warning("⚠️ CSV must have exactly 32 columns.")
        else:
            # Reordered: 4402 β†’ 3244, 4882 β†’ 4455
            df_32.columns = [str(h) for h in mutation_site_headers_3614]
            all_bits = df_32.values.flatten().astype(int).tolist()
            decoded_reordered = binary_labels_to_string(all_bits)

            st.subheader("Decoded String (Reordered 4402β†’3244, 4882β†’4455)")
            st.write(decoded_reordered)
            st.download_button("Download Reordered CSV", df_32.to_csv(index=False), "decoded_binary_32_reordered.csv", key="download_csv_tab5_32_reordered")

            # Ascending: 3244 β†’ 4882
            df_ascending = df_32[[str(h) for h in mutation_site_headers_actual_3614 if str(h) in df_32.columns]]
            decoded_asc = binary_labels_to_string(df_ascending.values.flatten().astype(int).tolist())

            st.subheader("Decoded String (Ascending 3244β†’4882)")
            st.write(decoded_asc)
            st.download_button("Download Ascending CSV", df_ascending.to_csv(index=False), "decoded_binary_32_ascending.csv", key="download_csv_tab5_32_ascend")

    st.markdown("---")

    st.subheader("πŸ”˜ Option 2: 31-bit Binary Grouped per Row")
    st.write("Upload CSV with 31 columns per row (each row = one 6-bit ASCII chunk group).")
    binary31_file = st.file_uploader("Upload 31-bit Group CSV", type=["csv"], key="binary_31")

    if binary31_file:
        df_31 = pd.read_csv(binary31_file, header=None)

        def trim_row(row):
            bits = row.dropna().astype(int).tolist()[:31]
            return bits

        decoded_rows = []
        for _, row in df_31.iterrows():
            bits = trim_row(row)
            decoded_rows.append(binary_labels_to_string(bits))

        st.subheader("Decoded String from 31-bit Chunks")
        full_decoded = "".join(decoded_rows)
        st.write(full_decoded)

        st.download_button("Download Concatenated Output", full_decoded, "decoded_31bit_string.txt", key="download_csv_tab5_31")