Spaces:
Sleeping
Sleeping
File size: 33,247 Bytes
f18e2ca cd40d80 330575e 4aa21d9 9f6f7ea 5b6d016 4aa21d9 b228ff5 8a9ad42 c93c36d 28a1f20 4aa21d9 8a9ad42 6477f4a 5b9bc91 6477f4a 60b9598 b8a65a6 6477f4a 5b9bc91 6477f4a 9c685c5 6477f4a b8a65a6 415844f 6477f4a 8777f65 b8a65a6 415844f 6477f4a 415844f 6477f4a e060a36 b8a65a6 415844f 6477f4a eaba916 b8a65a6 415844f 6477f4a 60b9598 6477f4a eaba916 b8a65a6 415844f 6477f4a b8a65a6 6477f4a 415844f b8a65a6 60b9598 415844f 6477f4a 9c685c5 1ced237 b8a65a6 9c685c5 6477f4a 9c685c5 6477f4a 60b9598 6477f4a 60b9598 6477f4a 1ced237 9c685c5 6477f4a 9c685c5 6477f4a 9c685c5 6477f4a 9c685c5 1ced237 9c685c5 8a9ad42 415844f 396779e 415844f 8a9ad42 3ddca4e 60b9598 8a9ad42 396779e 8a9ad42 396779e 6477f4a 396779e 6477f4a 8777f65 8a9ad42 3363a47 8a9ad42 415844f 8a9ad42 3ddca4e 8a9ad42 396779e 3ddca4e 8a9ad42 3363a47 415844f 26f3037 415844f 8a9ad42 d2e0bae 9c685c5 ef60401 8a9ad42 3ddca4e ef60401 6477f4a 1d71658 6477f4a 60b9598 6477f4a 6561573 6477f4a 8a9ad42 26f3037 8a9ad42 6477f4a 60b9598 6477f4a 26f3037 8a9ad42 26f3037 8a9ad42 0a73fdc 8a9ad42 1d71658 0a73fdc 6477f4a 26f3037 6477f4a 9c685c5 6477f4a 9c685c5 6477f4a 8a9ad42 6477f4a 396779e 1d71658 6477f4a d2e0bae 0a73fdc 415844f 8a9ad42 3ddca4e d2e0bae 6477f4a 396779e ef60401 3f9a023 1d71658 d2e0bae 415844f 1d71658 415844f 3ddca4e 415844f d2e0bae 3ddca4e d2e0bae 8a9ad42 415844f d2e0bae 3f9a023 415844f 3ddca4e ef60401 3ddca4e 3363a47 8a9ad42 3ddca4e 3363a47 8a9ad42 ef60401 60b9598 6477f4a 3ddca4e 93451f1 3363a47 8a9ad42 3ddca4e ef60401 3363a47 8a9ad42 3ddca4e 60b9598 8a9ad42 3363a47 8a9ad42 415844f 8777f65 3363a47 415844f 60b9598 415844f 8777f65 3ddca4e 8777f65 415844f 3ddca4e 8a9ad42 8777f65 415844f 14783cd f18e2ca 6477f4a 415844f 6477f4a 60b9598 415844f 26f3037 3ddca4e 26f3037 f18e2ca 3ddca4e 02e0a0a 26f3037 02e0a0a 8a9ad42 60b9598 02e0a0a 3d99e57 02e0a0a 3ddca4e 8a9ad42 3ddca4e 396779e 9f6f7ea 28a1f20 b8a65a6 b90251f 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 b177367 31243f4 c33725f 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f 31243f4 7d65c66 31243f4 7d65c66 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
#from smolagents import tool, Tool, CodeAgent, DuckDuckGoSearchTool, HfApiModel, VisitWebpageTool, SpeechToTextTool, FinalAnswerTool
from dotenv import load_dotenv
import heapq
from collections import Counter
import re
from io import BytesIO
from youtube_transcript_api import YouTubeTranscriptApi
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_community.document_loaders import ArxivLoader
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
#Load environment variables
load_dotenv()
import os
import time
import json
from typing import TypedDict, List, Union, Any, Dict, Optional
# LangChain and LangGraph imports
from langchain.schema import HumanMessage, AIMessage, SystemMessage
from langchain.prompts import ChatPromptTemplate
from langgraph.graph import StateGraph, END
from langchain_community.llms import HuggingFacePipeline
# Corrected Tool import: Use 'tool' (lowercase)
from langchain_core.tools import BaseTool, tool
# Hugging Face local model imports
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import torch
# Tool-specific imports
from duckduckgo_search import DDGS
import wikipedia
import arxiv
from transformers import pipeline as hf_pipeline # Renamed to avoid clash with main pipeline
from youtube_transcript_api import YouTubeTranscriptApi
# --- Helper function for python_execution tool ---
def indent_code(code: str, indent: str = " ") -> str:
"""Indents multi-line code for execution within a function."""
return "\n".join(indent + line for line in code.splitlines())
# --- Tool Definitions ---
@tool
def duckduckgo_search(query: str) -> str:
"""Search web using DuckDuckGo. Returns top 3 results."""
print(f"DEBUG: duckduckgo_search called with: {query}")
try:
with DDGS() as ddgs:
return "\n\n".join(
f"Title: {res['title']}\nURL: {res['href']}\nSnippet: {res['body']}"
for res in ddgs.text(query, max_results=3)
)
except Exception as e:
return f"Error performing DuckDuckGo search: {str(e)}"
@tool
def wikipedia_search(query: str) -> str:
"""Get Wikipedia summaries. Returns first 3 sentences."""
print(f"DEBUG: wikipedia_search called with: {query}")
try:
return wikipedia.summary(query, sentences=3)
except wikipedia.DisambiguationError as e:
return f"Disambiguation options: {', '.join(e.options[:3])}"
except wikipedia.PageError:
return "Wikipedia page not found."
except Exception as e:
return f"Error performing Wikipedia search: {str(e)}"
@tool
def arxiv_search(query: str) -> str:
"""Search academic papers on arXiv. Returns top 3 results."""
print(f"DEBUG: arxiv_search called with: {query}")
try:
results = arxiv.Search(
query=query,
max_results=3,
sort_by=arxiv.SortCriterion.Relevance
).results()
return "\n\n".join(
f"Title: {r.title}\nAuthors: {', '.join(a.name for a in r.authors)}\n"
f"Published: {r.published.strftime('%Y-%m-%d')}\nSummary: {r.summary[:250]}..."
for r in results
)
except Exception as e:
return f"Error performing ArXiv search: {str(e)}"
@tool
def document_qa(input_str: str) -> str:
"""Answer questions from documents. Input format: 'document_text||question'"""
print(f"DEBUG: document_qa called with: {input_str}")
try:
if '||' not in input_str:
return "Invalid format. Input must be: 'document_text||question'"
context, question = input_str.split('||', 1)
# Load QA model on first call or ensure it's loaded once globally.
# It's better to load once in __init__ for BasicAgent if possible,
# but this lazy loading prevents initial heavy load if tool is not used.
qa_model = hf_pipeline('question-answering', model='deepset/roberta-base-squad2')
return qa_model(question=question, context=context)['answer']
except Exception as e:
return f"Error answering question from document: {str(e)}"
@tool
def python_execution(code: str) -> str:
"""Execute Python code and return output.
The code should assign its final result to a variable named '_result_value'.
Example: '_result_value = 1 + 1'
"""
print(f"DEBUG: python_execution called with: {code}")
try:
# Create isolated environment
env = {}
# Wrap code in a function to isolate scope and capture '_result_value'
# The exec function is used carefully here. In a production environment,
# consider a more robust and secure sandbox (e.g., Docker, dedicated service).
exec(f"def __exec_fn__():\n{indent_code(code)}\n_result_value = __exec_fn__()", globals(), env)
return str(env.get('_result_value', 'No explicit result assigned to "_result_value" variable.'))
except Exception as e:
return f"Python execution error: {str(e)}"
class VideoTranscriptionTool(BaseTool):
name: str = "transcript_video"
# CORRECTED LINE BELOW: Added '=' for assignment
description: str = "Fetch text transcript from YouTube videos using URL or ID. Use for any question involving video or audio. Input is the YouTube URL or ID."
def _run(self, url_or_id: str) -> str:
print(f"DEBUG: transcript_video called with: {url_or_id}")
video_id = None
# Basic parsing for common YouTube URL formats
if "youtube.com/watch?v=" in url_or_id:
video_id = url_or_id.split("v=")[1].split("&")[0]
elif "youtu.be/" in url_or_id:
video_id = url_or_id.split("youtu.be/")[1].split("?")[0]
elif len(url_or_id.strip()) == 11 and not ("http://" in url_or_id or "https://" in url_or_id):
video_id = url_or_id.strip() # Assume it's just the ID
if not video_id:
return f"Invalid or unsupported YouTube URL/ID: {url_or_id}. Please provide a valid YouTube URL or 11-character ID."
try:
transcription = YouTubeTranscriptApi.get_transcript(video_id)
return " ".join([part['text'] for part in transcription])
except Exception as e:
return f"Error fetching transcript for video ID '{video_id}': {str(e)}. It might not have an English transcript, or the video is unavailable."
def _arun(self, *args, **kwargs):
raise NotImplementedError("Async not supported for this tool.")
# --- Agent State Definition ---
class AgentState(TypedDict):
question: str
history: List[Union[HumanMessage, AIMessage]]
context: Dict[str, Any]
reasoning: str
iterations: int
final_answer: Union[str, float, int, None]
current_task: str
current_thoughts: str
tools: List[BaseTool] # Make sure tools are passed via state, using BaseTool type
# --- Utility Functions ---
def parse_agent_response(response_content: str) -> tuple[str, str, str]:
"""
Parses the LLM's JSON output for reasoning, action, and action input.
Returns (reasoning, action, action_input).
If JSON parsing fails, it attempts heuristic parsing.
"""
try:
response_json = json.loads(response_content)
reasoning = response_json.get("Reasoning", "").strip()
action = response_json.get("Action", "").strip()
action_input = response_json.get("Action Input", "").strip()
return reasoning, action, action_input
except json.JSONDecodeError:
print(f"WARNING: JSONDecodeError: LLM response was not valid JSON. Attempting heuristic parse: {response_content[:200]}...")
# Heuristic parsing for non-JSON or partial JSON responses
reasoning = ""
action = ""
action_input = ""
# Attempt to find Reasoning
reasoning_idx = response_content.find("Reasoning:")
action_idx = response_content.find("Action:")
if reasoning_idx != -1 and action_idx != -1 and reasoning_idx < action_idx:
reasoning = response_content[reasoning_idx + len("Reasoning:"):action_idx].strip()
if reasoning.startswith('"') and reasoning.endswith('"'):
reasoning = reasoning[1:-1]
elif reasoning_idx != -1:
reasoning = response_content[reasoning_idx + len("Reasoning:"):].strip()
if reasoning.startswith('"') and reasoning.endswith('"'):
reasoning = reasoning[1:-1]
# Attempt to find Action and Action Input
if action_idx != -1:
action_input_idx = response_content.find("Action Input:", action_idx)
if action_input_idx != -1:
action_part = response_content[action_idx + len("Action:"):action_input_idx].strip()
action = action_part
action_input = response_content[action_input_idx + len("Action Input:"):].strip()
else:
action = response_content[action_idx + len("Action:"):].strip()
if action.startswith('"') and action.endswith('"'):
action = action[1:-1]
if action_input.startswith('"') and action_input.endswith('"'):
action_input = action_input[1:-1]
# Final cleanup for any trailing JSON artifacts if heuristic grabs too much
action = action.split('"', 1)[0].strip()
action_input = action_input.split('"', 1)[0].strip()
return reasoning, action, action_input
# --- Graph Nodes ---
def should_continue(state: AgentState) -> str:
"""
Determines if the agent should continue reasoning, use a tool, or end.
"""
print(f"DEBUG: Entering should_continue. Current context: {state.get('context', {})}")
if state.get("final_answer") is not None:
print("DEBUG: should_continue -> END (Final Answer set in state)")
return "end"
if state.get("context", {}).get("pending_action"):
print("DEBUG: should_continue -> ACTION (Pending action in context)")
return "action"
print("DEBUG: should_continue -> REASON (Default to reasoning)")
return "reason"
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.documents import Document
# ====== DOCUMENT PROCESSING SETUP ======
def create_vector_store():
"""Create vector store with predefined documents"""
# Define the documents
documents = [
Document(page_content="The capital of France is Paris.", metadata={"source": "geography"}),
Document(page_content="Python is a popular programming language created by Guido van Rossum.", metadata={"source": "tech"}),
Document(page_content="The Eiffel Tower is located in Paris, France.", metadata={"source": "landmarks"}),
]
# Initialize embedding model
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
# Split documents into chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500, # Smaller chunks for better precision
chunk_overlap=100
)
chunks = text_splitter.split_documents(documents)
# Create in-memory vector store
return Chroma.from_documents(
documents=chunks,
embedding=embeddings
)
def reasoning_node(state: AgentState) -> AgentState:
"""
Node for the agent to analyze the question, determine next steps,
and select tools.
"""
print(f"DEBUG: Entering reasoning_node. Iteration: {state['iterations']}")
print(f"DEBUG: Current history length: {len(state.get('history', []))}")
state.setdefault("context", {})
state.setdefault("reasoning", "")
state.setdefault("iterations", 0)
state.setdefault("current_task", "Understand the question and plan the next step.")
state.setdefault("current_thoughts", "")
state["context"].pop("pending_action", None)
# --- Initialize local HuggingFacePipeline ---
# Using Mistral-7B-Instruct-v0.2 for better agent performance
model_name = "mistralai/Mistral-7B-Instruct-v0.2"
print(f"DEBUG: Loading local model: {model_name}...")
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Load model with optimal settings for GPU if available, else CPU
# Use bfloat16 for GPUs that support it (NVIDIA Ampere architecture and newer)
# else float16 for older GPUs or float32 for CPU/fallback.
# device_map="auto" intelligently distributes the model across available devices.
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
device_map="auto"
)
# Create a transformers pipeline
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=1024, # Increased max_new_tokens for potentially longer JSON
temperature=0.1, # Keep low for factual, tool-use tasks
do_sample=True, # Allow some sampling
top_p=0.9, # Nucleus sampling
repetition_penalty=1.1, # Avoid repetition
# device_map handled by model loading
)
llm = HuggingFacePipeline(pipeline=pipe)
# --- END LOCAL LLM INITIALIZATION ---
tool_descriptions = "\n".join([
f"- **{t.name}**: {t.description}" for t in state.get("tools", [])
])
# ====== RAG RETRIEVAL ======
# Initialize vector store if not present
if "vector_store" not in state["context"]:
state["context"]["vector_store"] = create_vector_store()
vector_store = state["context"]["vector_store"]
# Perform retrieval
relevant_docs = vector_store.similarity_search(
state["question"],
k=3 # Retrieve top 3 most relevant chunks
)
# Format context for LLM
rag_context = "\n\n[Relevant Knowledge]\n"
rag_context += "\n---\n".join([doc.page_content for doc in relevant_docs])
# ====== RAG RETRIEVAL ======
# Initialize vector store if not present
if "vector_store" not in state["context"]:
state["context"]["vector_store"] = create_vector_store()
vector_store = state["context"]["vector_store"]
# Perform retrieval
relevant_docs = vector_store.similarity_search(
state["question"],
k=3 # Retrieve top 3 most relevant chunks
)
# Format context for LLM
rag_context = "\n\n[Relevant Knowledge]\n"
rag_context += "\n---\n".join([doc.page_content for doc in relevant_docs])
# ====== MODIFIED PROMPT ======
# Add RAG context to system prompt
system_prompt = (
"You are an expert problem solver, designed to provide concise and accurate answers. "
"Your process involves analyzing the question, intelligently selecting and using tools, "
"and synthesizing information.\n\n"
"**Available Tools:**\n"
f"{tool_descriptions}\n\n"
"**Tool Usage Guidelines:**\n"
"- Use **duckduckgo_search** for current events, general facts, or quick lookups. Provide a concise search query.\n"
"- Use **wikipedia_search** for encyclopedic information, historical context, or detailed topics. Provide a concise search term.\n"
"- Use **arxiv_search** for scientific papers, research, or cutting-edge technical information. Provide a concise search query.\n"
"- Use **document_qa** when the question explicitly refers to a specific document or when you have content to query. Input format: 'document_text||question'.\n"
"- Use **python_execution** for complex calculations, data manipulation, or logical operations that cannot be done with simple reasoning. Always provide the full Python code, ensuring it's valid and executable, and assign the final result to a variable named '_result_value' (e.g., '_result_value = 1 + 1').\n"
"- Use **transcript_video** for any question involving video or audio content (e.g., YouTube). Provide the full YouTube URL or video ID.\n\n"
"**Retrieved Context:**\n{rag_context}\n\n" # ADDED RAG CONTEXT
"**Current Context:**\n{context}\n\n"
"**Previous Reasoning Steps:**\n{reasoning}\n\n"
"**Current Task:** {current_task}\n"
"**Current Thoughts:** {current_thoughts}\n\n"
# ... [rest of prompt remains same] ...
)
prompt = ChatPromptTemplate.from_messages([
SystemMessage(content=system_prompt),
*state["history"]
])
formatted_messages = prompt.format_messages(
rag_context=rag_context, # ADD THIS ARGUMENT
context=state["context"],
reasoning=state["reasoning"],
question=state["question"],
current_task=state["current_task"],
current_thoughts=state["current_thoughts"]
)
# Use tokenizer's chat template for optimal formatting with chat models
try:
full_input_string = tokenizer.apply_chat_template(
formatted_messages,
tokenize=False,
add_generation_prompt=True # Adds the assistant's turn start token
)
except Exception as e:
print(f"WARNING: Failed to apply chat template: {e}. Falling back to simple string join. Model performance may be affected.")
full_input_string = "\n".join([msg.content for msg in formatted_messages])
def call_with_retry_local(inputs, retries=3): # Reduced retries for local models as network isn't primary issue
for attempt in range(retries):
try:
response_text = llm.invoke(inputs)
# Strip the prompt from the generated text
if response_text.startswith(inputs):
content = response_text[len(inputs):].strip()
else:
content = response_text.strip()
print(f"DEBUG: RAW LOCAL LLM Response (Attempt {attempt+1}):\n---\n{content}\n---")
# Attempt to parse to validate structure
json.loads(content)
return AIMessage(content=content)
except json.JSONDecodeError as e:
print(f"[Retry {attempt+1}/{retries}] Local LLM returned invalid JSON. Error: {e}. Retrying...")
print(f"Invalid JSON content (partial): {content[:200]}...")
state["history"].append(AIMessage(content=f"[Parsing Error] The previous LLM output was not valid JSON. Expected format: ```json{{\"Reasoning\": \"...\", \"Action\": \"...\", \"Action Input\": \"...\"}}```. Please ensure your response is ONLY valid JSON and strictly follows the format. Error: {e}"))
time.sleep(5)
except Exception as e:
print(f"[Retry {attempt+1}/{retries}] An unexpected error occurred during local LLM call: {e}.")
state["history"].append(AIMessage(content=f"[Local LLM Error] Failed to get a response from the local LLM: {e}. Trying again."))
time.sleep(10)
raise RuntimeError("Failed after multiple retries due to local Hugging Face model issues or invalid JSON.")
response = call_with_retry_local(full_input_string)
content = response.content
reasoning, action, action_input = parse_agent_response(content)
print(f"DEBUG: Parsed Action: '{action}', Action Input: '{action_input[:100]}...'")
if isinstance(response, AIMessage) and content == response.content:
state["history"].append(AIMessage(content=content))
state["reasoning"] += f"\nStep {state['iterations'] + 1}: {reasoning}"
state["iterations"] += 1
state["current_thoughts"] = reasoning
if "final answer" in action.lower():
state["final_answer"] = action_input
else:
state["context"]["pending_action"] = {
"tool": action,
"input": action_input
}
state["history"].append(AIMessage(content=f"Agent decided to use tool: {action} with input: {action_input}"))
print(f"DEBUG: Exiting reasoning_node. New history length: {len(state['history'])}")
return state
def tool_node(state: AgentState) -> AgentState:
"""
Node for executing the chosen tool and returning its output.
"""
print(f"DEBUG: Entering tool_node. Iteration: {state['iterations']}")
tool_call_dict = state["context"].pop("pending_action", None)
if not tool_call_dict:
error_message = "[Tool Error] No pending_action found in context. This indicates an issue with graph flow."
print(f"ERROR: {error_message}")
state["history"].append(AIMessage(content=error_message))
return state
tool_name = tool_call_dict.get("tool")
tool_input = tool_call_dict.get("input")
if not tool_name or tool_input is None:
error_message = f"[Tool Error] Invalid action request from LLM: Tool name '{tool_name}' or input '{tool_input}' was empty or None. LLM needs to provide valid 'Action' and 'Action Input'."
print(f"ERROR: {error_message}")
state["history"].append(AIMessage(content=error_message))
state["context"].pop("pending_action", None)
return state
available_tools = state.get("tools", [])
tool_fn = next((t for t in available_tools if t.name == tool_name), None)
if tool_fn is None:
tool_output = f"[Tool Error] Tool '{tool_name}' not found or not available. Please choose from: {', '.join([t.name for t in available_tools])}"
print(f"ERROR: {tool_output}")
else:
try:
print(f"DEBUG: Invoking tool '{tool_name}' with input: '{tool_input[:100]}...'")
tool_output = tool_fn.run(tool_input)
if not tool_output and tool_output is not False:
tool_output = f"[{tool_name} output] No specific result found for '{tool_input}'. The tool might have returned an empty response."
except Exception as e:
tool_output = f"[Tool Error] An error occurred while running '{tool_name}': {str(e)}"
print(f"ERROR: {tool_output}")
state["history"].append(AIMessage(content=f"[{tool_name} output]\n{tool_output}"))
print(f"DEBUG: Exiting tool_node. Tool output added to history. New history length: {len(state['history'])}")
return state
# ====== Agent Graph ======
def create_agent_workflow(tools: List[BaseTool]): # Use BaseTool for consistency
workflow = StateGraph(AgentState)
workflow.add_node("reason", reasoning_node)
workflow.add_node("action", tool_node)
workflow.set_entry_point("reason")
workflow.add_conditional_edges(
"reason",
should_continue,
{
"action": "action",
"reason": "reason",
"end": END
}
)
workflow.add_edge("action", "reason")
app = workflow.compile()
return app
# ====== Agent Interface ======
class BasicAgent:
def __init__(self):
# Instantiate tools
self.tools = [
duckduckgo_search,
wikipedia_search,
arxiv_search,
document_qa,
python_execution,
VideoTranscriptionTool()
]
# Pre-initialize RAG vector store
self.vector_store = create_vector_store()
self.workflow = create_agent_workflow(self.tools)
def __call__(self, question: str) -> str:
print(f"\n--- Agent received question: {question[:80]}{'...' if len(question) > 80 else ''} ---")
state = {
"question": question,
"context": {
"vector_store": self.vector_store # Include vector store in context
},
"reasoning": "",
"iterations": 0,
"history": [HumanMessage(content=question)],
"final_answer": None,
"current_task": "Understand the question and plan the next step.",
"current_thoughts": "",
"tools": self.tools
}
final_state = self.workflow.invoke(state)
if final_state.get("final_answer") is not None:
answer = final_state["final_answer"]
print(f"--- Agent returning FINAL ANSWER: {answer} ---")
return answer
else:
print(f"--- ERROR: Agent finished without setting 'final_answer' for question: {question} ---")
if final_state["history"]:
last_message = final_state["history"][-1].content
print(f"Last message in history: {last_message}")
return f"Agent could not fully answer. Last message: {last_message}"
else:
raise ValueError("Agent finished without providing a final answer and no history messages.")
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |