File size: 33,247 Bytes
f18e2ca
cd40d80
330575e
4aa21d9
9f6f7ea
5b6d016
4aa21d9
 
 
 
 
 
 
 
 
 
b228ff5
8a9ad42
c93c36d
28a1f20
 
 
4aa21d9
 
 
8a9ad42
6477f4a
 
 
 
5b9bc91
6477f4a
 
 
 
60b9598
 
 
b8a65a6
6477f4a
 
 
 
 
 
 
 
 
 
 
5b9bc91
6477f4a
 
 
 
9c685c5
6477f4a
b8a65a6
415844f
 
6477f4a
 
 
 
 
 
 
 
 
8777f65
b8a65a6
415844f
 
6477f4a
415844f
 
 
 
 
6477f4a
 
 
e060a36
b8a65a6
415844f
 
6477f4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaba916
b8a65a6
415844f
 
6477f4a
 
 
 
 
 
60b9598
 
 
6477f4a
 
 
 
eaba916
b8a65a6
415844f
6477f4a
b8a65a6
 
6477f4a
 
415844f
 
 
b8a65a6
60b9598
 
 
 
415844f
6477f4a
9c685c5
 
1ced237
b8a65a6
 
9c685c5
6477f4a
 
9c685c5
6477f4a
60b9598
6477f4a
60b9598
 
6477f4a
 
1ced237
9c685c5
6477f4a
9c685c5
 
 
6477f4a
9c685c5
 
6477f4a
9c685c5
 
1ced237
9c685c5
8a9ad42
415844f
 
396779e
 
415844f
 
8a9ad42
3ddca4e
 
60b9598
8a9ad42
 
 
 
 
396779e
 
8a9ad42
 
 
 
 
 
 
 
396779e
 
 
 
 
 
 
 
 
 
 
 
 
6477f4a
396779e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6477f4a
 
8777f65
8a9ad42
3363a47
 
8a9ad42
 
415844f
8a9ad42
 
 
3ddca4e
8a9ad42
396779e
3ddca4e
 
 
 
 
 
 
8a9ad42
3363a47
 
415844f
26f3037
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
415844f
8a9ad42
 
 
 
 
 
d2e0bae
9c685c5
ef60401
 
8a9ad42
 
3ddca4e
 
ef60401
6477f4a
 
 
1d71658
6477f4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60b9598
 
6477f4a
6561573
 
6477f4a
 
 
8a9ad42
 
 
 
26f3037
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a9ad42
 
 
 
 
 
 
6477f4a
 
 
 
60b9598
6477f4a
26f3037
8a9ad42
 
 
 
26f3037
8a9ad42
 
0a73fdc
8a9ad42
1d71658
0a73fdc
 
6477f4a
26f3037
6477f4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c685c5
6477f4a
9c685c5
 
6477f4a
 
 
 
 
 
 
 
 
 
 
 
 
 
8a9ad42
6477f4a
 
396779e
1d71658
 
6477f4a
 
 
 
 
 
d2e0bae
0a73fdc
415844f
8a9ad42
3ddca4e
d2e0bae
6477f4a
396779e
 
ef60401
3f9a023
1d71658
d2e0bae
415844f
1d71658
415844f
3ddca4e
415844f
d2e0bae
3ddca4e
 
 
d2e0bae
8a9ad42
415844f
d2e0bae
3f9a023
415844f
3ddca4e
 
 
 
ef60401
3ddca4e
3363a47
8a9ad42
3ddca4e
 
 
 
3363a47
8a9ad42
 
ef60401
60b9598
6477f4a
 
3ddca4e
 
93451f1
3363a47
8a9ad42
3ddca4e
ef60401
3363a47
8a9ad42
 
 
 
 
3ddca4e
60b9598
8a9ad42
 
 
 
3363a47
 
8a9ad42
 
415844f
8777f65
3363a47
415844f
60b9598
415844f
 
 
 
 
 
 
 
 
 
8777f65
3ddca4e
 
 
8777f65
415844f
 
3ddca4e
8a9ad42
 
 
 
8777f65
415844f
14783cd
f18e2ca
6477f4a
415844f
6477f4a
 
 
 
 
60b9598
415844f
26f3037
 
 
3ddca4e
26f3037
f18e2ca
3ddca4e
02e0a0a
 
 
26f3037
 
 
02e0a0a
 
8a9ad42
 
 
 
60b9598
02e0a0a
 
3d99e57
02e0a0a
3ddca4e
8a9ad42
 
 
3ddca4e
 
396779e
 
 
 
 
 
 
9f6f7ea
28a1f20
b8a65a6
b90251f
31243f4
 
 
 
7d65c66
b177367
3c4371f
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
b177367
31243f4
c33725f
31243f4
3c4371f
31243f4
b177367
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
3c4371f
 
31243f4
e80aab9
31243f4
 
3c4371f
 
7d65c66
3c4371f
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3c4371f
31243f4
 
 
 
 
 
 
7d65c66
 
 
31243f4
 
7d65c66
31243f4
 
3c4371f
31243f4
 
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
81917a3
e514fd7
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
import os
import gradio as gr
import requests
import inspect
import pandas as pd
#from smolagents import tool, Tool, CodeAgent, DuckDuckGoSearchTool, HfApiModel, VisitWebpageTool, SpeechToTextTool, FinalAnswerTool
from dotenv import load_dotenv
import heapq
from collections import Counter
import re
from io import BytesIO
from youtube_transcript_api import YouTubeTranscriptApi
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_community.document_loaders import ArxivLoader


# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

#Load environment variables
load_dotenv()


import os
import time
import json
from typing import TypedDict, List, Union, Any, Dict, Optional

# LangChain and LangGraph imports
from langchain.schema import HumanMessage, AIMessage, SystemMessage
from langchain.prompts import ChatPromptTemplate
from langgraph.graph import StateGraph, END
from langchain_community.llms import HuggingFacePipeline 

# Corrected Tool import: Use 'tool' (lowercase)
from langchain_core.tools import BaseTool, tool 

# Hugging Face local model imports
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import torch 

# Tool-specific imports
from duckduckgo_search import DDGS
import wikipedia
import arxiv
from transformers import pipeline as hf_pipeline # Renamed to avoid clash with main pipeline
from youtube_transcript_api import YouTubeTranscriptApi

# --- Helper function for python_execution tool ---
def indent_code(code: str, indent: str = "    ") -> str:
    """Indents multi-line code for execution within a function."""
    return "\n".join(indent + line for line in code.splitlines())

# --- Tool Definitions ---
@tool 
def duckduckgo_search(query: str) -> str:
    """Search web using DuckDuckGo. Returns top 3 results."""
    print(f"DEBUG: duckduckgo_search called with: {query}")
    try:
        with DDGS() as ddgs:
            return "\n\n".join(
                f"Title: {res['title']}\nURL: {res['href']}\nSnippet: {res['body']}"
                for res in ddgs.text(query, max_results=3)
            )
    except Exception as e:
        return f"Error performing DuckDuckGo search: {str(e)}"

@tool 
def wikipedia_search(query: str) -> str:
    """Get Wikipedia summaries. Returns first 3 sentences."""
    print(f"DEBUG: wikipedia_search called with: {query}")
    try:
        return wikipedia.summary(query, sentences=3)
    except wikipedia.DisambiguationError as e:
        return f"Disambiguation options: {', '.join(e.options[:3])}"
    except wikipedia.PageError:
        return "Wikipedia page not found."
    except Exception as e:
        return f"Error performing Wikipedia search: {str(e)}"

@tool 
def arxiv_search(query: str) -> str:
    """Search academic papers on arXiv. Returns top 3 results."""
    print(f"DEBUG: arxiv_search called with: {query}")
    try:
        results = arxiv.Search(
            query=query, 
            max_results=3,
            sort_by=arxiv.SortCriterion.Relevance
        ).results()
        
        return "\n\n".join(
            f"Title: {r.title}\nAuthors: {', '.join(a.name for a in r.authors)}\n"
            f"Published: {r.published.strftime('%Y-%m-%d')}\nSummary: {r.summary[:250]}..."
            for r in results
        )
    except Exception as e:
        return f"Error performing ArXiv search: {str(e)}"

@tool 
def document_qa(input_str: str) -> str:
    """Answer questions from documents. Input format: 'document_text||question'"""
    print(f"DEBUG: document_qa called with: {input_str}")
    try:
        if '||' not in input_str:
            return "Invalid format. Input must be: 'document_text||question'"
        
        context, question = input_str.split('||', 1)
        # Load QA model on first call or ensure it's loaded once globally.
        # It's better to load once in __init__ for BasicAgent if possible,
        # but this lazy loading prevents initial heavy load if tool is not used.
        qa_model = hf_pipeline('question-answering', model='deepset/roberta-base-squad2')
        return qa_model(question=question, context=context)['answer']
    except Exception as e:
        return f"Error answering question from document: {str(e)}"

@tool 
def python_execution(code: str) -> str:
    """Execute Python code and return output.
    The code should assign its final result to a variable named '_result_value'.
    Example: '_result_value = 1 + 1'
    """
    print(f"DEBUG: python_execution called with: {code}")
    try:
        # Create isolated environment
        env = {}
        # Wrap code in a function to isolate scope and capture '_result_value'
        # The exec function is used carefully here. In a production environment,
        # consider a more robust and secure sandbox (e.g., Docker, dedicated service).
        exec(f"def __exec_fn__():\n{indent_code(code)}\n_result_value = __exec_fn__()", globals(), env)
        return str(env.get('_result_value', 'No explicit result assigned to "_result_value" variable.'))
    except Exception as e:
        return f"Python execution error: {str(e)}"

class VideoTranscriptionTool(BaseTool):
    name: str = "transcript_video"
    # CORRECTED LINE BELOW: Added '=' for assignment
    description: str = "Fetch text transcript from YouTube videos using URL or ID. Use for any question involving video or audio. Input is the YouTube URL or ID." 

    def _run(self, url_or_id: str) -> str:
        print(f"DEBUG: transcript_video called with: {url_or_id}")
        video_id = None
        # Basic parsing for common YouTube URL formats
        if "youtube.com/watch?v=" in url_or_id:
            video_id = url_or_id.split("v=")[1].split("&")[0]
        elif "youtu.be/" in url_or_id:
            video_id = url_or_id.split("youtu.be/")[1].split("?")[0]
        elif len(url_or_id.strip()) == 11 and not ("http://" in url_or_id or "https://" in url_or_id):
            video_id = url_or_id.strip() # Assume it's just the ID

        if not video_id:
            return f"Invalid or unsupported YouTube URL/ID: {url_or_id}. Please provide a valid YouTube URL or 11-character ID."

        try:
            transcription = YouTubeTranscriptApi.get_transcript(video_id)
            return " ".join([part['text'] for part in transcription])

        except Exception as e:
            return f"Error fetching transcript for video ID '{video_id}': {str(e)}. It might not have an English transcript, or the video is unavailable."

    def _arun(self, *args, **kwargs):
        raise NotImplementedError("Async not supported for this tool.")

# --- Agent State Definition ---
class AgentState(TypedDict):
    question: str
    history: List[Union[HumanMessage, AIMessage]]
    context: Dict[str, Any]
    reasoning: str
    iterations: int
    final_answer: Union[str, float, int, None]
    current_task: str
    current_thoughts: str
    tools: List[BaseTool] # Make sure tools are passed via state, using BaseTool type

# --- Utility Functions ---
def parse_agent_response(response_content: str) -> tuple[str, str, str]:
    """
    Parses the LLM's JSON output for reasoning, action, and action input.
    Returns (reasoning, action, action_input).
    If JSON parsing fails, it attempts heuristic parsing.
    """
    try:
        response_json = json.loads(response_content)
        reasoning = response_json.get("Reasoning", "").strip()
        action = response_json.get("Action", "").strip()
        action_input = response_json.get("Action Input", "").strip()
        return reasoning, action, action_input
    except json.JSONDecodeError:
        print(f"WARNING: JSONDecodeError: LLM response was not valid JSON. Attempting heuristic parse: {response_content[:200]}...")
        # Heuristic parsing for non-JSON or partial JSON responses
        reasoning = ""
        action = ""
        action_input = ""

        # Attempt to find Reasoning
        reasoning_idx = response_content.find("Reasoning:")
        action_idx = response_content.find("Action:")
        if reasoning_idx != -1 and action_idx != -1 and reasoning_idx < action_idx:
            reasoning = response_content[reasoning_idx + len("Reasoning:"):action_idx].strip()
            if reasoning.startswith('"') and reasoning.endswith('"'):
                reasoning = reasoning[1:-1]
        elif reasoning_idx != -1: 
             reasoning = response_content[reasoning_idx + len("Reasoning:"):].strip()
             if reasoning.startswith('"') and reasoning.endswith('"'):
                reasoning = reasoning[1:-1]

        # Attempt to find Action and Action Input
        if action_idx != -1:
            action_input_idx = response_content.find("Action Input:", action_idx)
            if action_input_idx != -1:
                action_part = response_content[action_idx + len("Action:"):action_input_idx].strip()
                action = action_part
                action_input = response_content[action_input_idx + len("Action Input:"):].strip()
            else:
                action = response_content[action_idx + len("Action:"):].strip()
            
            if action.startswith('"') and action.endswith('"'):
                action = action[1:-1]
            if action_input.startswith('"') and action_input.endswith('"'):
                action_input = action_input[1:-1]

        # Final cleanup for any trailing JSON artifacts if heuristic grabs too much
        action = action.split('"', 1)[0].strip() 
        action_input = action_input.split('"', 1)[0].strip() 

        return reasoning, action, action_input


# --- Graph Nodes ---

def should_continue(state: AgentState) -> str:
    """
    Determines if the agent should continue reasoning, use a tool, or end.
    """
    print(f"DEBUG: Entering should_continue. Current context: {state.get('context', {})}")
    
    if state.get("final_answer") is not None:
        print("DEBUG: should_continue -> END (Final Answer set in state)")
        return "end"

    if state.get("context", {}).get("pending_action"):
        print("DEBUG: should_continue -> ACTION (Pending action in context)")
        return "action"

    print("DEBUG: should_continue -> REASON (Default to reasoning)")
    return "reason"


from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.documents import Document

# ====== DOCUMENT PROCESSING SETUP ======
def create_vector_store():
    """Create vector store with predefined documents"""
    # Define the documents
    documents = [
        Document(page_content="The capital of France is Paris.", metadata={"source": "geography"}),
        Document(page_content="Python is a popular programming language created by Guido van Rossum.", metadata={"source": "tech"}),
        Document(page_content="The Eiffel Tower is located in Paris, France.", metadata={"source": "landmarks"}),
    ]
    
    # Initialize embedding model
    embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
    
    # Split documents into chunks
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=500,  # Smaller chunks for better precision
        chunk_overlap=100
    )
    chunks = text_splitter.split_documents(documents)
    
    # Create in-memory vector store
    return Chroma.from_documents(
        documents=chunks,
        embedding=embeddings
    )


def reasoning_node(state: AgentState) -> AgentState:
    """
    Node for the agent to analyze the question, determine next steps,
    and select tools.
    """
    print(f"DEBUG: Entering reasoning_node. Iteration: {state['iterations']}")
    print(f"DEBUG: Current history length: {len(state.get('history', []))}")

    state.setdefault("context", {})
    state.setdefault("reasoning", "")
    state.setdefault("iterations", 0)
    state.setdefault("current_task", "Understand the question and plan the next step.")
    state.setdefault("current_thoughts", "")
    
    state["context"].pop("pending_action", None) 

    # --- Initialize local HuggingFacePipeline ---
    # Using Mistral-7B-Instruct-v0.2 for better agent performance
    model_name = "mistralai/Mistral-7B-Instruct-v0.2" 
    
    print(f"DEBUG: Loading local model: {model_name}...")
    
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    
    # Load model with optimal settings for GPU if available, else CPU
    # Use bfloat16 for GPUs that support it (NVIDIA Ampere architecture and newer)
    # else float16 for older GPUs or float32 for CPU/fallback.
    # device_map="auto" intelligently distributes the model across available devices.
    model = AutoModelForCausalLM.from_pretrained(
        model_name, 
        torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32, 
        device_map="auto"
    )

    # Create a transformers pipeline
    pipe = pipeline(
        "text-generation",
        model=model,
        tokenizer=tokenizer,
        max_new_tokens=1024, # Increased max_new_tokens for potentially longer JSON
        temperature=0.1,    # Keep low for factual, tool-use tasks
        do_sample=True,     # Allow some sampling
        top_p=0.9,          # Nucleus sampling
        repetition_penalty=1.1, # Avoid repetition
        # device_map handled by model loading
    )

    llm = HuggingFacePipeline(pipeline=pipe)
    # --- END LOCAL LLM INITIALIZATION ---

    tool_descriptions = "\n".join([
        f"- **{t.name}**: {t.description}" for t in state.get("tools", [])
    ])

    # ====== RAG RETRIEVAL ======
    # Initialize vector store if not present
    if "vector_store" not in state["context"]:
        state["context"]["vector_store"] = create_vector_store()
    
    vector_store = state["context"]["vector_store"]
    
    # Perform retrieval
    relevant_docs = vector_store.similarity_search(
        state["question"], 
        k=3  # Retrieve top 3 most relevant chunks
    )
    
    # Format context for LLM
    rag_context = "\n\n[Relevant Knowledge]\n"
    rag_context += "\n---\n".join([doc.page_content for doc in relevant_docs])
    
    # ====== RAG RETRIEVAL ======
    # Initialize vector store if not present
    if "vector_store" not in state["context"]:
        state["context"]["vector_store"] = create_vector_store()
    
    vector_store = state["context"]["vector_store"]
    
    # Perform retrieval
    relevant_docs = vector_store.similarity_search(
        state["question"], 
        k=3  # Retrieve top 3 most relevant chunks
    )
    
    # Format context for LLM
    rag_context = "\n\n[Relevant Knowledge]\n"
    rag_context += "\n---\n".join([doc.page_content for doc in relevant_docs])
    
    # ====== MODIFIED PROMPT ======
    # Add RAG context to system prompt
    system_prompt = (
        "You are an expert problem solver, designed to provide concise and accurate answers. "
        "Your process involves analyzing the question, intelligently selecting and using tools, "
        "and synthesizing information.\n\n"
        "**Available Tools:**\n"
        f"{tool_descriptions}\n\n"
        "**Tool Usage Guidelines:**\n"
        "- Use **duckduckgo_search** for current events, general facts, or quick lookups. Provide a concise search query.\n"
        "- Use **wikipedia_search** for encyclopedic information, historical context, or detailed topics. Provide a concise search term.\n"
        "- Use **arxiv_search** for scientific papers, research, or cutting-edge technical information. Provide a concise search query.\n"
        "- Use **document_qa** when the question explicitly refers to a specific document or when you have content to query. Input format: 'document_text||question'.\n"
        "- Use **python_execution** for complex calculations, data manipulation, or logical operations that cannot be done with simple reasoning. Always provide the full Python code, ensuring it's valid and executable, and assign the final result to a variable named '_result_value' (e.g., '_result_value = 1 + 1').\n"
        "- Use **transcript_video** for any question involving video or audio content (e.g., YouTube). Provide the full YouTube URL or video ID.\n\n"
        "**Retrieved Context:**\n{rag_context}\n\n"  # ADDED RAG CONTEXT
        "**Current Context:**\n{context}\n\n"
        "**Previous Reasoning Steps:**\n{reasoning}\n\n"
        "**Current Task:** {current_task}\n"
        "**Current Thoughts:** {current_thoughts}\n\n"
        # ... [rest of prompt remains same] ...
    )

    prompt = ChatPromptTemplate.from_messages([
        SystemMessage(content=system_prompt),
        *state["history"] 
    ])

    formatted_messages = prompt.format_messages(
        rag_context=rag_context,  # ADD THIS ARGUMENT
        context=state["context"],
        reasoning=state["reasoning"],
        question=state["question"],
        current_task=state["current_task"],
        current_thoughts=state["current_thoughts"]
    )
    
    # Use tokenizer's chat template for optimal formatting with chat models
    try:
        full_input_string = tokenizer.apply_chat_template(
            formatted_messages, 
            tokenize=False, 
            add_generation_prompt=True # Adds the assistant's turn start token
        )
    except Exception as e:
        print(f"WARNING: Failed to apply chat template: {e}. Falling back to simple string join. Model performance may be affected.")
        full_input_string = "\n".join([msg.content for msg in formatted_messages])

    def call_with_retry_local(inputs, retries=3): # Reduced retries for local models as network isn't primary issue
        for attempt in range(retries):
            try:
                response_text = llm.invoke(inputs) 
                
                # Strip the prompt from the generated text
                if response_text.startswith(inputs):
                    content = response_text[len(inputs):].strip()
                else:
                    content = response_text.strip() 

                print(f"DEBUG: RAW LOCAL LLM Response (Attempt {attempt+1}):\n---\n{content}\n---")
                
                # Attempt to parse to validate structure
                json.loads(content) 
                
                return AIMessage(content=content)
            except json.JSONDecodeError as e:
                print(f"[Retry {attempt+1}/{retries}] Local LLM returned invalid JSON. Error: {e}. Retrying...")
                print(f"Invalid JSON content (partial): {content[:200]}...")
                state["history"].append(AIMessage(content=f"[Parsing Error] The previous LLM output was not valid JSON. Expected format: ```json{{\"Reasoning\": \"...\", \"Action\": \"...\", \"Action Input\": \"...\"}}```. Please ensure your response is ONLY valid JSON and strictly follows the format. Error: {e}"))
                time.sleep(5) 
            except Exception as e: 
                print(f"[Retry {attempt+1}/{retries}] An unexpected error occurred during local LLM call: {e}.")
                state["history"].append(AIMessage(content=f"[Local LLM Error] Failed to get a response from the local LLM: {e}. Trying again."))
                time.sleep(10) 
        raise RuntimeError("Failed after multiple retries due to local Hugging Face model issues or invalid JSON.")

    response = call_with_retry_local(full_input_string) 

    content = response.content
    reasoning, action, action_input = parse_agent_response(content)
    
    print(f"DEBUG: Parsed Action: '{action}', Action Input: '{action_input[:100]}...'")

    if isinstance(response, AIMessage) and content == response.content: 
        state["history"].append(AIMessage(content=content)) 
        
    state["reasoning"] += f"\nStep {state['iterations'] + 1}: {reasoning}"
    state["iterations"] += 1
    state["current_thoughts"] = reasoning 

    if "final answer" in action.lower():
        state["final_answer"] = action_input 
    else:
        state["context"]["pending_action"] = {
            "tool": action,
            "input": action_input
        }
        state["history"].append(AIMessage(content=f"Agent decided to use tool: {action} with input: {action_input}"))


    print(f"DEBUG: Exiting reasoning_node. New history length: {len(state['history'])}")
    return state


def tool_node(state: AgentState) -> AgentState:
    """
    Node for executing the chosen tool and returning its output.
    """
    print(f"DEBUG: Entering tool_node. Iteration: {state['iterations']}")

    tool_call_dict = state["context"].pop("pending_action", None)

    if not tool_call_dict:
        error_message = "[Tool Error] No pending_action found in context. This indicates an issue with graph flow."
        print(f"ERROR: {error_message}")
        state["history"].append(AIMessage(content=error_message))
        return state

    tool_name = tool_call_dict.get("tool")
    tool_input = tool_call_dict.get("input")

    if not tool_name or tool_input is None: 
        error_message = f"[Tool Error] Invalid action request from LLM: Tool name '{tool_name}' or input '{tool_input}' was empty or None. LLM needs to provide valid 'Action' and 'Action Input'."
        print(f"ERROR: {error_message}") 
        state["history"].append(AIMessage(content=error_message))
        state["context"].pop("pending_action", None)
        return state

    available_tools = state.get("tools", [])
    tool_fn = next((t for t in available_tools if t.name == tool_name), None)

    if tool_fn is None:
        tool_output = f"[Tool Error] Tool '{tool_name}' not found or not available. Please choose from: {', '.join([t.name for t in available_tools])}"
        print(f"ERROR: {tool_output}")
    else:
        try:
            print(f"DEBUG: Invoking tool '{tool_name}' with input: '{tool_input[:100]}...'")
            tool_output = tool_fn.run(tool_input)
            if not tool_output and tool_output is not False: 
                tool_output = f"[{tool_name} output] No specific result found for '{tool_input}'. The tool might have returned an empty response."
        except Exception as e:
            tool_output = f"[Tool Error] An error occurred while running '{tool_name}': {str(e)}"
            print(f"ERROR: {tool_output}")

    state["history"].append(AIMessage(content=f"[{tool_name} output]\n{tool_output}"))
    
    print(f"DEBUG: Exiting tool_node. Tool output added to history. New history length: {len(state['history'])}")
    return state


# ====== Agent Graph ======
def create_agent_workflow(tools: List[BaseTool]): # Use BaseTool for consistency
    workflow = StateGraph(AgentState)
    
    workflow.add_node("reason", reasoning_node)
    workflow.add_node("action", tool_node)
    
    workflow.set_entry_point("reason")
    
    workflow.add_conditional_edges(
        "reason",
        should_continue,
        {
            "action": "action",
            "reason": "reason",
            "end": END
        }
    )
    
    workflow.add_edge("action", "reason")
    
    app = workflow.compile()
    return app


# ====== Agent Interface ======
class BasicAgent:
    def __init__(self):
        # Instantiate tools
        self.tools = [
            duckduckgo_search,
            wikipedia_search,
            arxiv_search,
            document_qa,
            python_execution,
            VideoTranscriptionTool() 
        ]
        
        # Pre-initialize RAG vector store
        self.vector_store = create_vector_store()
        self.workflow = create_agent_workflow(self.tools)
    
    def __call__(self, question: str) -> str:
        print(f"\n--- Agent received question: {question[:80]}{'...' if len(question) > 80 else ''} ---")

        state = {
            "question": question,
            "context": {
                "vector_store": self.vector_store  # Include vector store in context
            },
            "reasoning": "",
            "iterations": 0,
            "history": [HumanMessage(content=question)],
            "final_answer": None,
            "current_task": "Understand the question and plan the next step.",
            "current_thoughts": "",
            "tools": self.tools 
        }

        final_state = self.workflow.invoke(state)

        if final_state.get("final_answer") is not None:
            answer = final_state["final_answer"]
            print(f"--- Agent returning FINAL ANSWER: {answer} ---")
            return answer
        else:
            print(f"--- ERROR: Agent finished without setting 'final_answer' for question: {question} ---")
            if final_state["history"]:
                last_message = final_state["history"][-1].content
                print(f"Last message in history: {last_message}")
                return f"Agent could not fully answer. Last message: {last_message}"
            else:
                raise ValueError("Agent finished without providing a final answer and no history messages.")




def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)