File size: 32,151 Bytes
f18e2ca
cd40d80
330575e
4aa21d9
9f6f7ea
4aa21d9
 
 
 
 
 
 
 
 
 
 
b228ff5
8a9ad42
c93c36d
28a1f20
 
 
4aa21d9
 
 
8a9ad42
415844f
 
 
 
 
 
40de8fd
 
 
415844f
5b9bc91
 
 
 
 
b678e6b
 
5b9bc91
 
 
9c685c5
415844f
 
 
 
 
 
 
 
 
8777f65
 
415844f
 
 
 
 
 
 
 
 
 
e060a36
415844f
 
 
 
 
 
 
 
 
c93c36d
415844f
 
 
 
 
eaba916
415844f
 
 
 
 
 
 
 
 
 
eaba916
415844f
 
 
 
 
 
 
 
 
 
4aa21d9
1ced237
9c685c5
 
 
 
1ced237
 
9c685c5
1ced237
 
9c685c5
 
 
 
 
 
 
1ced237
9c685c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ced237
9c685c5
 
4aa21d9
8a9ad42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
415844f
 
8a9ad42
 
415844f
 
8a9ad42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
415844f
8a9ad42
 
8777f65
8a9ad42
 
 
 
3363a47
 
8a9ad42
 
415844f
8a9ad42
 
 
ef60401
3363a47
8a9ad42
 
 
415844f
8a9ad42
 
 
 
 
 
 
3363a47
8a9ad42
 
 
ef60401
8a9ad42
 
 
3363a47
8a9ad42
 
3363a47
 
415844f
 
8a9ad42
 
 
 
 
 
d2e0bae
9c685c5
0a73fdc
 
 
1b2bf09
8a9ad42
ef60401
 
8a9ad42
 
9c685c5
ef60401
 
8a9ad42
 
ef60401
9c685c5
0a73fdc
8a9ad42
 
0a73fdc
6561573
 
8a9ad42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a73fdc
8a9ad42
 
0a73fdc
 
 
9c685c5
 
 
 
 
8a9ad42
 
 
 
9c685c5
8a9ad42
 
 
 
 
 
 
 
9c685c5
8a9ad42
9c685c5
 
 
6561573
ef60401
8a9ad42
 
 
40de8fd
d2e0bae
8a9ad42
0a73fdc
415844f
8a9ad42
 
 
d2e0bae
3f9a023
8a9ad42
ef60401
3f9a023
8a9ad42
d2e0bae
415844f
3f9a023
8a9ad42
415844f
8a9ad42
 
 
415844f
d2e0bae
8a9ad42
d2e0bae
8a9ad42
415844f
d2e0bae
3f9a023
415844f
93451f1
ef60401
8a9ad42
3363a47
8a9ad42
 
3363a47
 
8a9ad42
 
93451f1
3363a47
8a9ad42
 
ef60401
93451f1
 
 
 
 
 
 
 
 
 
3363a47
8a9ad42
 
 
ef60401
3363a47
8a9ad42
 
 
 
 
 
 
 
 
 
 
 
3363a47
ef60401
8a9ad42
 
 
3363a47
8a9ad42
 
415844f
8777f65
3363a47
415844f
8a9ad42
415844f
 
 
 
 
 
 
 
 
 
 
 
 
8777f65
8a9ad42
 
 
8777f65
415844f
 
8a9ad42
 
 
 
 
 
 
 
 
 
 
8777f65
415844f
14783cd
f18e2ca
8a9ad42
 
415844f
8a9ad42
 
 
 
 
 
415844f
8a9ad42
3d99e57
f18e2ca
8a9ad42
02e0a0a
8a9ad42
02e0a0a
 
8a9ad42
02e0a0a
 
8a9ad42
 
 
 
 
02e0a0a
 
8a9ad42
3d99e57
02e0a0a
 
8a9ad42
 
 
 
 
 
02e0a0a
3d99e57
55ec576
8a9ad42
55ec576
02e0a0a
8a9ad42
5b9bc91
 
 
9f6f7ea
28a1f20
b90251f
31243f4
 
 
 
7d65c66
b177367
3c4371f
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
b177367
31243f4
c33725f
31243f4
3c4371f
31243f4
b177367
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
3c4371f
 
31243f4
e80aab9
31243f4
 
3c4371f
 
7d65c66
3c4371f
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3c4371f
31243f4
 
 
 
 
 
 
7d65c66
 
 
31243f4
 
7d65c66
31243f4
 
3c4371f
31243f4
 
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
81917a3
e514fd7
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from smolagents import tool, Tool, CodeAgent, DuckDuckGoSearchTool, HfApiModel, VisitWebpageTool, SpeechToTextTool, FinalAnswerTool
from dotenv import load_dotenv
import heapq
from collections import Counter
import re
from io import BytesIO
from youtube_transcript_api import YouTubeTranscriptApi
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_community.document_loaders import ArxivLoader


# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

#Load environment variables
load_dotenv()


from langgraph.graph import END, StateGraph
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain_core.tools import tool
from typing import Dict, List, TypedDict, Annotated
import operator
from langchain_community.llms import HuggingFaceHub
from langchain_community.chat_models import ChatHuggingFace


from langchain.schema import HumanMessage  # Or your framework's equivalent

def init_state(question: str):
    return {
        "question": question,
        "history": [HumanMessage(content=question)],
        "context": {}  # <- Add this line
    }



# ====== Tool Definitions ======
@tool
def duckduckgo_search(query: str) -> str:
    """Search web using DuckDuckGo. Returns top 3 results."""
    from duckduckgo_search import DDGS
    with DDGS() as ddgs:
        return "\n\n".join(
            f"Title: {res['title']}\nURL: {res['href']}\nSnippet: {res['body']}"
            for res in ddgs.text(query, max_results=3)
        )

@tool
def wikipedia_search(query: str) -> str:
    """Get Wikipedia summaries. Returns first 3 sentences."""
    import wikipedia
    try:
        return wikipedia.summary(query, sentences=3)
    except wikipedia.DisambiguationError as e:
        return f"Disambiguation options: {', '.join(e.options[:3])}"
    except wikipedia.PageError:
        return "Page not found"

@tool
def arxiv_search(query: str) -> str:
    """Search academic papers on arXiv. Returns top 3 results."""
    import arxiv
    results = arxiv.Search(
        query=query, 
        max_results=3,
        sort_by=arxiv.SortCriterion.Relevance
    ).results()
    
    return "\n\n".join(
        f"Title: {r.title}\nAuthors: {', '.join(a.name for a in r.authors)}\n"
        f"Published: {r.published.strftime('%Y-%m-%d')}\nSummary: {r.summary[:250]}..."
        for r in results
    )

@tool
def document_qa(input_str: str) -> str:
    """Answer questions from documents. Input format: 'document_text||question'"""
    from transformers import pipeline
    if '||' not in input_str:
        return "Invalid format. Use: 'document_text||question'"
    
    context, question = input_str.split('||', 1)
    qa_model = pipeline('question-answering', model='deepset/roberta-base-squad2')
    return qa_model(question=question, context=context)['answer']

@tool
def python_execution(code: str) -> str:
    """Execute Python code and return output."""
    try:
        # Create isolated environment
        env = {}
        exec(f"def __exec_fn__():\n    {indent_code(code)}\nresult = __exec_fn__()", env)
        return str(env.get('result', 'No output'))
    except Exception as e:
        return f"Error: {str(e)}"

from typing import Optional
from langchain_core.tools import BaseTool
from youtube_transcript_api import YouTubeTranscriptApi

class VideoTranscriptionTool(BaseTool):
    name: str = "transcript_video"
    description: str = "Fetch text transcript from YouTube videos using URL or ID. Optionally include timestamps."

    def _run(self, url: str, include_timestamps: Optional[bool] = False) -> str:
        # Extract video ID
        video_id = None
        if "youtube.com/watch?v=" in url:
            video_id = url.split("v=")[1].split("&")[0]
        elif "youtu.be/" in url:
            video_id = url.split("youtu.be/")[1].split("?")[0]
        elif len(url.strip()) == 11 and not ("http://" in url or "https://" in url):
            video_id = url.strip()

        if not video_id:
            return f"Invalid or unsupported YouTube URL/ID: {url}"

        try:
            transcription = YouTubeTranscriptApi.get_transcript(video_id)

            if include_timestamps:
                formatted = []
                for part in transcription:
                    timestamp = f"{int(part['start']//60)}:{int(part['start']%60):02d}"
                    formatted.append(f"[{timestamp}] {part['text']}")
                return "\n".join(formatted)
            else:
                return " ".join([part['text'] for part in transcription])

        except Exception as e:
            return f"Error fetching transcript: {str(e)}"

    def _arun(self, *args, **kwargs):
        raise NotImplementedError("Async not supported for this tool.")





import os
import time
import json
from typing import TypedDict, List, Union, Any, Dict
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.schema import HumanMessage, AIMessage, SystemMessage
from langchain.prompts import ChatPromptTemplate
from langgraph.graph import StateGraph, END
from google.api_core.exceptions import ResourceExhausted

# Assume these tools are defined elsewhere and imported
# Placeholder for your actual tool implementations
# For example:
# from your_tools_module import duckduckgo_search, wikipedia_search, arxiv_search, document_qa, python_execution
# And ensure you have a proper VideoTranscriptionTool
def duckduckgo_search(query: str) -> str:
    """Performs a DuckDuckGo search for current events or general facts."""
    # Placeholder for actual implementation
    print(f"DEBUG: duckduckgo_search called with: {query}")
    return f"Search result for '{query}': Example relevant information from web."

def wikipedia_search(query: str) -> str:
    """Searches Wikipedia for encyclopedic information."""
    # Placeholder for actual implementation
    print(f"DEBUG: wikipedia_search called with: {query}")
    return f"Wikipedia result for '{query}': Found detailed article."

def arxiv_search(query: str) -> str:
    """Searches ArXiv for scientific preprints and papers."""
    # Placeholder for actual implementation
    print(f"DEBUG: arxiv_search called with: {query}")
    return f"ArXiv result for '{query}': Found relevant research paper."

def document_qa(document_path: str, question: str) -> str:
    """Answers questions based on the content of a given document file (PDF, DOCX, TXT)."""
    # Placeholder for actual implementation
    print(f"DEBUG: document_qa called with: {document_path}, question: {question}")
    return f"Document QA result for '{question}': Answer extracted from document."

def python_execution(code: str) -> str:
    """Executes Python code in a sandboxed environment for calculations or data manipulation."""
    # Placeholder for actual implementation - IMPORTANT: Implement this securely!
    # Example (UNSAFE for real use without proper sandboxing):
    try:
        exec_globals = {}
        exec_locals = {}
        exec(code, exec_globals, exec_locals)
        return str(exec_locals.get('result', 'Code executed, no explicit result assigned to "result" variable.'))
    except Exception as e:
        return f"Python execution error: {str(e)}"

class VideoTranscriptionTool:
    """Transcribes and analyzes video content from a URL or ID."""
    def __call__(self, video_id_or_url: str) -> str:
        # Placeholder for actual implementation using youtube-transcript-api etc.
        print(f"DEBUG: VideoTranscriptionTool called with: {video_id_or_url}")
        return f"Video transcription/analysis result for '{video_id_or_url}': Summary of video content."


# --- Agent State Definition ---
class AgentState(TypedDict):
    question: str
    history: List[Union[HumanMessage, AIMessage, Dict[str, Any]]] # Allows for tool calls as dicts
    context: Dict[str, Any]
    reasoning: str
    iterations: int
    final_answer: Union[str, float, int, None]
    current_task: str # Added for more focused reasoning
    current_thoughts: str # Added for more focused reasoning

# --- Utility Functions ---
def parse_agent_response(response_content: str) -> tuple[str, str, str]:
    """
    Parses the LLM's JSON output for reasoning, action, and action input.
    """
    try:
        response_json = json.loads(response_content)
        reasoning = response_json.get("Reasoning", "").strip()
        action = response_json.get("Action", "").strip()
        action_input = response_json.get("Action Input", "").strip()
        return reasoning, action, action_input
    except json.JSONDecodeError:
        # Fallback for when LLM doesn't return perfect JSON (less likely with good prompt)
        print(f"WARNING: LLM response not perfectly JSON: {response_content[:200]}...")
        # Attempt heuristic parsing as a last resort
        reasoning_match = response_content.split("Reasoning:", 1)
        reasoning = reasoning_match[1].split("Action:", 1)[0].strip() if len(reasoning_match) > 1 else ""

        action_part_match = response_content.split("Action:", 1)
        action_part = action_part_match[1].strip() if len(action_part_match) > 1 else ""

        action_input_match = action_part.split("Action Input:", 1)
        action = action_input_match[0].strip()
        action_input = action_input_match[1].strip() if len(action_input_match) > 1 else ""
        return reasoning, action, action_input


# --- Graph Nodes ---

def should_continue(state: AgentState) -> str:
    """
    Determines if the agent should continue reasoning, use a tool, or end.
    """
    history = state.get("history", [])

    # Check for final answer in the last AIMessage
    if history and isinstance(history[-1], AIMessage) and "FINAL ANSWER:" in history[-1].content:
        print("DEBUG: should_continue -> END (Final Answer detected)")
        return "end"
    
    # Check if a tool was just executed (its output is in history)
    # and the next step should be reasoning over that output
    for msg in reversed(history):
        if isinstance(msg, AIMessage) and any(f"[{tool.name} output]" in msg.content for tool in state.get("tools", [])):
            print("DEBUG: should_continue -> REASON (Tool output detected, need to process)")
            return "reason"

    # Check if there's an action request to be executed
    # This happens *after* reasoning has determined a tool is needed,
    # but *before* the tool has run.
    for msg in reversed(history):
        if isinstance(msg, dict) and msg.get("type") == "action_request":
            print("DEBUG: should_continue -> ACTION (Action request pending)")
            return "action"

    # If nothing else, assume we need to reason
    print("DEBUG: should_continue -> REASON (Default to reasoning)")
    return "reason"


def reasoning_node(state: AgentState) -> AgentState:
    """
    Node for the agent to analyze the question, determine next steps,
    and select tools.
    """
    print(f"DEBUG: Entering reasoning_node. Iteration: {state['iterations']}")
    print(f"DEBUG: Current history length: {len(state.get('history', []))}")

    # Load API key
    GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
    if not GOOGLE_API_KEY:
        raise ValueError("GOOGLE_API_KEY not set in environment variables.")

    # Ensure history is well-formed for the LLM prompt
    if "history" not in state or not isinstance(state["history"], list):
        state["history"] = []
    
    # Initialize/update state fields
    state.setdefault("context", {})
    state.setdefault("reasoning", "")
    state.setdefault("iterations", 0)
    state.setdefault("current_task", "Understand the question and plan the next step.")
    state.setdefault("current_thoughts", "")

    # Create Gemini model wrapper
    llm = ChatGoogleGenerativeAI(
        model="gemini-1.5-flash", # Use a fast model for agentic loops
        temperature=0.1, # Keep it low for more deterministic reasoning
        google_api_key=GOOGLE_API_KEY
    )

    # Dynamically generate tool descriptions for the prompt
    tool_descriptions = "\n".join([
        f"- **{t.name}**: {t.description}" for t in state.get("tools", [])
    ])

    # Craft a more robust and explicit system prompt
    system_prompt = (
        "You are an expert problem solver, designed to provide concise and accurate answers. "
        "Your process involves analyzing the question, intelligently selecting and using tools, "
        "and synthesizing information.\n\n"
        "**Available Tools:**\n"
        f"{tool_descriptions}\n\n"
        "**Tool Usage Guidelines:**\n"
        "- Use **duckduckgo_search** for current events, general facts, or quick lookups.\n"
        "- Use **wikipedia_search** for encyclopedic information, historical context, or detailed topics.\n"
        "- Use **arxiv_search** for scientific papers, research, or cutting-edge technical information.\n"
        "- Use **document_qa** when the question explicitly refers to a specific document file (e.g., 'Analyze this PDF').\n"
        "- Use **python_execution** for complex calculations, data manipulation, or logical operations that cannot be done with simple reasoning. Always provide the full Python code.\n"
        "- Use **VideoTranscriptionTool** for any question involving video or audio content.\n\n"
        "**Current Context:**\n{context}\n\n"
        "**Previous Reasoning Steps:**\n{reasoning}\n\n"
        "**Current Task:** {current_task}\n"
        "**Current Thoughts:** {current_thoughts}\n\n"
        "**Your Response MUST be a valid JSON object with the following keys:**\n"
        "```json\n"
        "{\n"
        "  \"Reasoning\": \"Your detailed analysis of the question and why you chose a specific action.\",\n"
        "  \"Action\": \"[Tool name OR 'Final Answer']\",\n"
        "  \"Action Input\": \"[Input for the selected tool OR the final response]\"\n"
        "}\n"
        "```\n"
        "Ensure 'Action Input' is appropriate for the chosen 'Action'. If 'Action' is 'Final Answer', provide the complete, concise answer."
    )

    prompt = ChatPromptTemplate.from_messages([
        SystemMessage(content=system_prompt),
        *state["history"] # Include full history for conversational context
    ])

    chain = prompt | llm

    # === Add Retry Logic ===
    def call_with_retry(inputs, retries=3, delay=60):
        for attempt in range(retries):
            try:
                response = chain.invoke(inputs)
                # Attempt to parse immediately to catch bad JSON before returning
                parse_agent_response(response.content) 
                return response
            except ResourceExhausted as e:
                print(f"[Retry {attempt+1}/{retries}] Gemini rate limit hit. Waiting {delay}s...")
                time.sleep(delay)
            except json.JSONDecodeError as e:
                print(f"[Retry {attempt+1}/{retries}] LLM returned invalid JSON. Retrying...")
                print(f"Invalid JSON content: {response.content[:200]}...")
                time.sleep(5) # Shorter delay for parsing errors
            except Exception as e:
                print(f"[Retry {attempt+1}/{retries}] An unexpected error occurred during LLM call: {e}. Retrying...")
                time.sleep(delay)
        raise RuntimeError("Failed after multiple retries due to Gemini quota limit or invalid JSON.")

    # Call model with retry protection
    response = call_with_retry({
        "context": state["context"],
        "reasoning": state["reasoning"],
        "question": state["question"], # Redundant as it's in history, but keeps prompt consistent
        "current_task": state["current_task"],
        "current_thoughts": state["current_thoughts"]
    })

    # Parse output using the robust JSON parser
    content = response.content
    reasoning, action, action_input = parse_agent_response(content)
    
    print(f"DEBUG: LLM Response Content: {content[:200]}...")
    print(f"DEBUG: Parsed Action: {action}, Action Input: {action_input[:100]}...")

    # Update state
    state["history"].append(AIMessage(content=content)) # Store the raw LLM response
    state["reasoning"] += f"\nStep {state['iterations'] + 1}: {reasoning}"
    state["iterations"] += 1
    state["current_thoughts"] = reasoning # Update current thoughts for next iteration

    if "final answer" in action.lower():
        state["history"].append(AIMessage(content=f"FINAL ANSWER: {action_input}"))
        state["final_answer"] = action_input # Set final answer directly in state
    else:
        # Store the action request in history for tool_node
        state["history"].append({
            "type": "action_request",
            "tool": action,
            "input": action_input
        })

    print(f"DEBUG: Exiting reasoning_node. New history length: {len(state['history'])}")
    return state


def tool_node(state: AgentState) -> AgentState:
    # ... (previous code)

    tool_call_dict = None
    for msg in reversed(state["history"]):
        if isinstance(msg, dict) and msg.get("type") == "action_request":
            tool_call_dict = msg
            break

    if not tool_call_dict:
        print("WARNING: No action_request found in history, skipping tool execution.")
        return state # Or raise a more specific error if this truly shouldn't happen

    tool_name = tool_call_dict.get("tool")
    tool_input = tool_call_dict.get("input")

    # --- ADD THIS DEBUG PRINT ---
    print(f"DEBUG: tool_node received action_request: tool='{tool_name}', input='{tool_input[:100]}...'")
    # --- END DEBUG PRINT ---

    if not tool_name or tool_input is None: # tool_input can be empty string for some tools, but not None
        print(f"ERROR: Invalid tool call in action_request. Tool name: '{tool_name}', Input: '{tool_input}'")
        # Instead of raising directly, you might want to send this back to reasoning
        # Or provide a specific error message as tool output
        state["history"].append(AIMessage(content=f"[Tool Error] Invalid tool call: Tool name '{tool_name}' or input was empty. LLM needs to provide valid action."))
        return state

    # Look up and invoke the tool from the state's tool list
    available_tools = state.get("tools", [])
    tool_fn = next((t for t in available_tools if t.name == tool_name), None) # Assuming tools are LangChain Tool objects now

    if tool_fn is None:
        # Fallback for unrecognized tool - feedback to LLM
        tool_output = f"[Tool Error] Tool '{tool_name}' not found or not available. Please choose from: {', '.join([t.name for t in available_tools])}"
        print(f"ERROR: {tool_output}")
    else:
        try:
            print(f"DEBUG: Invoking tool '{tool_name}' with input: '{tool_input[:100]}...'")
            tool_output = tool_fn.run(tool_input) # Assuming tool.run() method for LangChain Tools
            if not tool_output: # Handle empty tool output
                tool_output = f"[{tool_name} output] No specific result found for '{tool_input}'. The tool might have returned an empty response."
        except Exception as e:
            tool_output = f"[Tool Error] An error occurred while running '{tool_name}': {str(e)}"
            print(f"ERROR: {tool_output}")

    # Add output to history as an AIMessage
    # Ensure the history only contains HumanMessage and AIMessage objects for LangGraph's internal processing.
    # The action_request dict can be removed or transformed if it's no longer needed for internal state.
    # For now, we'll just add the tool output.
    state["history"].append(AIMessage(content=f"[{tool_name} output]\n{tool_output}"))
    
    print(f"DEBUG: Exiting tool_node. Tool output added to history. New history length: {len(state['history'])}")
    return state


# ====== Agent Graph ======
def create_agent_workflow(tools: List[Any]): # tools are passed in now
    workflow = StateGraph(AgentState)
    
    # Define nodes
    workflow.add_node("reason", reasoning_node)
    workflow.add_node("action", tool_node)
    
    # Set entry point
    workflow.set_entry_point("reason")
    
    # Define edges
    workflow.add_conditional_edges(
        "reason",
        should_continue,
        {
            "action": "action", # Go to action node if a tool is requested
            "reason": "reason", # Loop back to reason if more thinking is needed
            "end": END          # End if final answer detected
        }
    )
    
    workflow.add_edge("action", "reason") # Always go back to reasoning after a tool action
    
    # Compile the graph
    app = workflow.compile()
    
    # Pass tools into the state so nodes can access them.
    # This is a bit of a hacky way to get them into the state, but works for now.
    # A cleaner way might be to make `tool_node` receive tools as a closure or directly from agent init.
    # For this example, we'll modify the initial state for each invocation.
    return app


# ====== Agent Interface ======
class BasicAgent:
    def __init__(self):
        # Tools need to be LangChain Tool objects for name and description
        from langchain.tools import Tool
        self.tools = [
            Tool(name="duckduckgo_search", func=duckduckgo_search, description="Performs a DuckDuckGo search for current events or general facts."),
            Tool(name="wikipedia_search", func=wikipedia_search, description="Searches Wikipedia for encyclopedic information."),
            Tool(name="arxiv_search", func=arxiv_search, description="Searches ArXiv for scientific preprints and papers."),
            Tool(name="document_qa", func=document_qa, description="Answers questions based on the content of a given document file (PDF, DOCX, TXT). Requires 'attachment_path' and 'question' as input."),
            Tool(name="python_execution", func=python_execution, description="Executes Python code in a sandboxed environment for complex calculations or data manipulation."),
            Tool(name="VideoTranscriptionTool", func=VideoTranscriptionTool(), description="Transcribes and analyzes video content from a URL or ID. Use for any question involving video or audio.")
        ]
        self.workflow = create_agent_workflow(self.tools) # Pass tools to workflow creator

    def __call__(self, question: str) -> str:
        print(f"\n--- Agent received question: {question[:50]}{'...' if len(question) > 50 else ''} ---")

        # Initialize state with proper structure and pass tools
        state = {
            "question": question,
            "context": {},
            "reasoning": "",
            "iterations": 0,
            "history": [HumanMessage(content=question)],
            "final_answer": None,
            "current_task": "Understand the question and plan the next step.",
            "current_thoughts": "",
            "tools": self.tools # Pass tools into the state
        }

        # Invoke the workflow
        final_state = self.workflow.invoke(state)

        # Extract the FINAL ANSWER from history
        if final_state.get("final_answer"):
            answer = final_state["final_answer"]
            print(f"--- Agent returning FINAL ANSWER: {answer} ---")
            return answer
        
        # Fallback if final_answer wasn't set correctly in state
        for msg in reversed(final_state["history"]):
            if isinstance(msg, AIMessage) and "FINAL ANSWER:" in msg.content:
                answer = msg.content.split("FINAL ANSWER:")[1].strip()
                print(f"--- Agent returning FINAL ANSWER (from history): {answer} ---")
                return answer

        print(f"--- ERROR: No FINAL ANSWER found in agent history for question: {question} ---")
        raise ValueError("No FINAL ANSWER found in agent history.")

    


def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)