Spaces:
Sleeping
Sleeping
File size: 32,151 Bytes
f18e2ca cd40d80 330575e 4aa21d9 9f6f7ea 4aa21d9 b228ff5 8a9ad42 c93c36d 28a1f20 4aa21d9 8a9ad42 415844f 40de8fd 415844f 5b9bc91 b678e6b 5b9bc91 9c685c5 415844f 8777f65 415844f e060a36 415844f c93c36d 415844f eaba916 415844f eaba916 415844f 4aa21d9 1ced237 9c685c5 1ced237 9c685c5 1ced237 9c685c5 1ced237 9c685c5 1ced237 9c685c5 4aa21d9 8a9ad42 415844f 8a9ad42 415844f 8a9ad42 415844f 8a9ad42 8777f65 8a9ad42 3363a47 8a9ad42 415844f 8a9ad42 ef60401 3363a47 8a9ad42 415844f 8a9ad42 3363a47 8a9ad42 ef60401 8a9ad42 3363a47 8a9ad42 3363a47 415844f 8a9ad42 d2e0bae 9c685c5 0a73fdc 1b2bf09 8a9ad42 ef60401 8a9ad42 9c685c5 ef60401 8a9ad42 ef60401 9c685c5 0a73fdc 8a9ad42 0a73fdc 6561573 8a9ad42 0a73fdc 8a9ad42 0a73fdc 9c685c5 8a9ad42 9c685c5 8a9ad42 9c685c5 8a9ad42 9c685c5 6561573 ef60401 8a9ad42 40de8fd d2e0bae 8a9ad42 0a73fdc 415844f 8a9ad42 d2e0bae 3f9a023 8a9ad42 ef60401 3f9a023 8a9ad42 d2e0bae 415844f 3f9a023 8a9ad42 415844f 8a9ad42 415844f d2e0bae 8a9ad42 d2e0bae 8a9ad42 415844f d2e0bae 3f9a023 415844f 93451f1 ef60401 8a9ad42 3363a47 8a9ad42 3363a47 8a9ad42 93451f1 3363a47 8a9ad42 ef60401 93451f1 3363a47 8a9ad42 ef60401 3363a47 8a9ad42 3363a47 ef60401 8a9ad42 3363a47 8a9ad42 415844f 8777f65 3363a47 415844f 8a9ad42 415844f 8777f65 8a9ad42 8777f65 415844f 8a9ad42 8777f65 415844f 14783cd f18e2ca 8a9ad42 415844f 8a9ad42 415844f 8a9ad42 3d99e57 f18e2ca 8a9ad42 02e0a0a 8a9ad42 02e0a0a 8a9ad42 02e0a0a 8a9ad42 02e0a0a 8a9ad42 3d99e57 02e0a0a 8a9ad42 02e0a0a 3d99e57 55ec576 8a9ad42 55ec576 02e0a0a 8a9ad42 5b9bc91 9f6f7ea 28a1f20 b90251f 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 b177367 31243f4 c33725f 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f 31243f4 7d65c66 31243f4 7d65c66 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from smolagents import tool, Tool, CodeAgent, DuckDuckGoSearchTool, HfApiModel, VisitWebpageTool, SpeechToTextTool, FinalAnswerTool
from dotenv import load_dotenv
import heapq
from collections import Counter
import re
from io import BytesIO
from youtube_transcript_api import YouTubeTranscriptApi
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_community.document_loaders import ArxivLoader
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
#Load environment variables
load_dotenv()
from langgraph.graph import END, StateGraph
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain_core.tools import tool
from typing import Dict, List, TypedDict, Annotated
import operator
from langchain_community.llms import HuggingFaceHub
from langchain_community.chat_models import ChatHuggingFace
from langchain.schema import HumanMessage # Or your framework's equivalent
def init_state(question: str):
return {
"question": question,
"history": [HumanMessage(content=question)],
"context": {} # <- Add this line
}
# ====== Tool Definitions ======
@tool
def duckduckgo_search(query: str) -> str:
"""Search web using DuckDuckGo. Returns top 3 results."""
from duckduckgo_search import DDGS
with DDGS() as ddgs:
return "\n\n".join(
f"Title: {res['title']}\nURL: {res['href']}\nSnippet: {res['body']}"
for res in ddgs.text(query, max_results=3)
)
@tool
def wikipedia_search(query: str) -> str:
"""Get Wikipedia summaries. Returns first 3 sentences."""
import wikipedia
try:
return wikipedia.summary(query, sentences=3)
except wikipedia.DisambiguationError as e:
return f"Disambiguation options: {', '.join(e.options[:3])}"
except wikipedia.PageError:
return "Page not found"
@tool
def arxiv_search(query: str) -> str:
"""Search academic papers on arXiv. Returns top 3 results."""
import arxiv
results = arxiv.Search(
query=query,
max_results=3,
sort_by=arxiv.SortCriterion.Relevance
).results()
return "\n\n".join(
f"Title: {r.title}\nAuthors: {', '.join(a.name for a in r.authors)}\n"
f"Published: {r.published.strftime('%Y-%m-%d')}\nSummary: {r.summary[:250]}..."
for r in results
)
@tool
def document_qa(input_str: str) -> str:
"""Answer questions from documents. Input format: 'document_text||question'"""
from transformers import pipeline
if '||' not in input_str:
return "Invalid format. Use: 'document_text||question'"
context, question = input_str.split('||', 1)
qa_model = pipeline('question-answering', model='deepset/roberta-base-squad2')
return qa_model(question=question, context=context)['answer']
@tool
def python_execution(code: str) -> str:
"""Execute Python code and return output."""
try:
# Create isolated environment
env = {}
exec(f"def __exec_fn__():\n {indent_code(code)}\nresult = __exec_fn__()", env)
return str(env.get('result', 'No output'))
except Exception as e:
return f"Error: {str(e)}"
from typing import Optional
from langchain_core.tools import BaseTool
from youtube_transcript_api import YouTubeTranscriptApi
class VideoTranscriptionTool(BaseTool):
name: str = "transcript_video"
description: str = "Fetch text transcript from YouTube videos using URL or ID. Optionally include timestamps."
def _run(self, url: str, include_timestamps: Optional[bool] = False) -> str:
# Extract video ID
video_id = None
if "youtube.com/watch?v=" in url:
video_id = url.split("v=")[1].split("&")[0]
elif "youtu.be/" in url:
video_id = url.split("youtu.be/")[1].split("?")[0]
elif len(url.strip()) == 11 and not ("http://" in url or "https://" in url):
video_id = url.strip()
if not video_id:
return f"Invalid or unsupported YouTube URL/ID: {url}"
try:
transcription = YouTubeTranscriptApi.get_transcript(video_id)
if include_timestamps:
formatted = []
for part in transcription:
timestamp = f"{int(part['start']//60)}:{int(part['start']%60):02d}"
formatted.append(f"[{timestamp}] {part['text']}")
return "\n".join(formatted)
else:
return " ".join([part['text'] for part in transcription])
except Exception as e:
return f"Error fetching transcript: {str(e)}"
def _arun(self, *args, **kwargs):
raise NotImplementedError("Async not supported for this tool.")
import os
import time
import json
from typing import TypedDict, List, Union, Any, Dict
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.schema import HumanMessage, AIMessage, SystemMessage
from langchain.prompts import ChatPromptTemplate
from langgraph.graph import StateGraph, END
from google.api_core.exceptions import ResourceExhausted
# Assume these tools are defined elsewhere and imported
# Placeholder for your actual tool implementations
# For example:
# from your_tools_module import duckduckgo_search, wikipedia_search, arxiv_search, document_qa, python_execution
# And ensure you have a proper VideoTranscriptionTool
def duckduckgo_search(query: str) -> str:
"""Performs a DuckDuckGo search for current events or general facts."""
# Placeholder for actual implementation
print(f"DEBUG: duckduckgo_search called with: {query}")
return f"Search result for '{query}': Example relevant information from web."
def wikipedia_search(query: str) -> str:
"""Searches Wikipedia for encyclopedic information."""
# Placeholder for actual implementation
print(f"DEBUG: wikipedia_search called with: {query}")
return f"Wikipedia result for '{query}': Found detailed article."
def arxiv_search(query: str) -> str:
"""Searches ArXiv for scientific preprints and papers."""
# Placeholder for actual implementation
print(f"DEBUG: arxiv_search called with: {query}")
return f"ArXiv result for '{query}': Found relevant research paper."
def document_qa(document_path: str, question: str) -> str:
"""Answers questions based on the content of a given document file (PDF, DOCX, TXT)."""
# Placeholder for actual implementation
print(f"DEBUG: document_qa called with: {document_path}, question: {question}")
return f"Document QA result for '{question}': Answer extracted from document."
def python_execution(code: str) -> str:
"""Executes Python code in a sandboxed environment for calculations or data manipulation."""
# Placeholder for actual implementation - IMPORTANT: Implement this securely!
# Example (UNSAFE for real use without proper sandboxing):
try:
exec_globals = {}
exec_locals = {}
exec(code, exec_globals, exec_locals)
return str(exec_locals.get('result', 'Code executed, no explicit result assigned to "result" variable.'))
except Exception as e:
return f"Python execution error: {str(e)}"
class VideoTranscriptionTool:
"""Transcribes and analyzes video content from a URL or ID."""
def __call__(self, video_id_or_url: str) -> str:
# Placeholder for actual implementation using youtube-transcript-api etc.
print(f"DEBUG: VideoTranscriptionTool called with: {video_id_or_url}")
return f"Video transcription/analysis result for '{video_id_or_url}': Summary of video content."
# --- Agent State Definition ---
class AgentState(TypedDict):
question: str
history: List[Union[HumanMessage, AIMessage, Dict[str, Any]]] # Allows for tool calls as dicts
context: Dict[str, Any]
reasoning: str
iterations: int
final_answer: Union[str, float, int, None]
current_task: str # Added for more focused reasoning
current_thoughts: str # Added for more focused reasoning
# --- Utility Functions ---
def parse_agent_response(response_content: str) -> tuple[str, str, str]:
"""
Parses the LLM's JSON output for reasoning, action, and action input.
"""
try:
response_json = json.loads(response_content)
reasoning = response_json.get("Reasoning", "").strip()
action = response_json.get("Action", "").strip()
action_input = response_json.get("Action Input", "").strip()
return reasoning, action, action_input
except json.JSONDecodeError:
# Fallback for when LLM doesn't return perfect JSON (less likely with good prompt)
print(f"WARNING: LLM response not perfectly JSON: {response_content[:200]}...")
# Attempt heuristic parsing as a last resort
reasoning_match = response_content.split("Reasoning:", 1)
reasoning = reasoning_match[1].split("Action:", 1)[0].strip() if len(reasoning_match) > 1 else ""
action_part_match = response_content.split("Action:", 1)
action_part = action_part_match[1].strip() if len(action_part_match) > 1 else ""
action_input_match = action_part.split("Action Input:", 1)
action = action_input_match[0].strip()
action_input = action_input_match[1].strip() if len(action_input_match) > 1 else ""
return reasoning, action, action_input
# --- Graph Nodes ---
def should_continue(state: AgentState) -> str:
"""
Determines if the agent should continue reasoning, use a tool, or end.
"""
history = state.get("history", [])
# Check for final answer in the last AIMessage
if history and isinstance(history[-1], AIMessage) and "FINAL ANSWER:" in history[-1].content:
print("DEBUG: should_continue -> END (Final Answer detected)")
return "end"
# Check if a tool was just executed (its output is in history)
# and the next step should be reasoning over that output
for msg in reversed(history):
if isinstance(msg, AIMessage) and any(f"[{tool.name} output]" in msg.content for tool in state.get("tools", [])):
print("DEBUG: should_continue -> REASON (Tool output detected, need to process)")
return "reason"
# Check if there's an action request to be executed
# This happens *after* reasoning has determined a tool is needed,
# but *before* the tool has run.
for msg in reversed(history):
if isinstance(msg, dict) and msg.get("type") == "action_request":
print("DEBUG: should_continue -> ACTION (Action request pending)")
return "action"
# If nothing else, assume we need to reason
print("DEBUG: should_continue -> REASON (Default to reasoning)")
return "reason"
def reasoning_node(state: AgentState) -> AgentState:
"""
Node for the agent to analyze the question, determine next steps,
and select tools.
"""
print(f"DEBUG: Entering reasoning_node. Iteration: {state['iterations']}")
print(f"DEBUG: Current history length: {len(state.get('history', []))}")
# Load API key
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY not set in environment variables.")
# Ensure history is well-formed for the LLM prompt
if "history" not in state or not isinstance(state["history"], list):
state["history"] = []
# Initialize/update state fields
state.setdefault("context", {})
state.setdefault("reasoning", "")
state.setdefault("iterations", 0)
state.setdefault("current_task", "Understand the question and plan the next step.")
state.setdefault("current_thoughts", "")
# Create Gemini model wrapper
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-flash", # Use a fast model for agentic loops
temperature=0.1, # Keep it low for more deterministic reasoning
google_api_key=GOOGLE_API_KEY
)
# Dynamically generate tool descriptions for the prompt
tool_descriptions = "\n".join([
f"- **{t.name}**: {t.description}" for t in state.get("tools", [])
])
# Craft a more robust and explicit system prompt
system_prompt = (
"You are an expert problem solver, designed to provide concise and accurate answers. "
"Your process involves analyzing the question, intelligently selecting and using tools, "
"and synthesizing information.\n\n"
"**Available Tools:**\n"
f"{tool_descriptions}\n\n"
"**Tool Usage Guidelines:**\n"
"- Use **duckduckgo_search** for current events, general facts, or quick lookups.\n"
"- Use **wikipedia_search** for encyclopedic information, historical context, or detailed topics.\n"
"- Use **arxiv_search** for scientific papers, research, or cutting-edge technical information.\n"
"- Use **document_qa** when the question explicitly refers to a specific document file (e.g., 'Analyze this PDF').\n"
"- Use **python_execution** for complex calculations, data manipulation, or logical operations that cannot be done with simple reasoning. Always provide the full Python code.\n"
"- Use **VideoTranscriptionTool** for any question involving video or audio content.\n\n"
"**Current Context:**\n{context}\n\n"
"**Previous Reasoning Steps:**\n{reasoning}\n\n"
"**Current Task:** {current_task}\n"
"**Current Thoughts:** {current_thoughts}\n\n"
"**Your Response MUST be a valid JSON object with the following keys:**\n"
"```json\n"
"{\n"
" \"Reasoning\": \"Your detailed analysis of the question and why you chose a specific action.\",\n"
" \"Action\": \"[Tool name OR 'Final Answer']\",\n"
" \"Action Input\": \"[Input for the selected tool OR the final response]\"\n"
"}\n"
"```\n"
"Ensure 'Action Input' is appropriate for the chosen 'Action'. If 'Action' is 'Final Answer', provide the complete, concise answer."
)
prompt = ChatPromptTemplate.from_messages([
SystemMessage(content=system_prompt),
*state["history"] # Include full history for conversational context
])
chain = prompt | llm
# === Add Retry Logic ===
def call_with_retry(inputs, retries=3, delay=60):
for attempt in range(retries):
try:
response = chain.invoke(inputs)
# Attempt to parse immediately to catch bad JSON before returning
parse_agent_response(response.content)
return response
except ResourceExhausted as e:
print(f"[Retry {attempt+1}/{retries}] Gemini rate limit hit. Waiting {delay}s...")
time.sleep(delay)
except json.JSONDecodeError as e:
print(f"[Retry {attempt+1}/{retries}] LLM returned invalid JSON. Retrying...")
print(f"Invalid JSON content: {response.content[:200]}...")
time.sleep(5) # Shorter delay for parsing errors
except Exception as e:
print(f"[Retry {attempt+1}/{retries}] An unexpected error occurred during LLM call: {e}. Retrying...")
time.sleep(delay)
raise RuntimeError("Failed after multiple retries due to Gemini quota limit or invalid JSON.")
# Call model with retry protection
response = call_with_retry({
"context": state["context"],
"reasoning": state["reasoning"],
"question": state["question"], # Redundant as it's in history, but keeps prompt consistent
"current_task": state["current_task"],
"current_thoughts": state["current_thoughts"]
})
# Parse output using the robust JSON parser
content = response.content
reasoning, action, action_input = parse_agent_response(content)
print(f"DEBUG: LLM Response Content: {content[:200]}...")
print(f"DEBUG: Parsed Action: {action}, Action Input: {action_input[:100]}...")
# Update state
state["history"].append(AIMessage(content=content)) # Store the raw LLM response
state["reasoning"] += f"\nStep {state['iterations'] + 1}: {reasoning}"
state["iterations"] += 1
state["current_thoughts"] = reasoning # Update current thoughts for next iteration
if "final answer" in action.lower():
state["history"].append(AIMessage(content=f"FINAL ANSWER: {action_input}"))
state["final_answer"] = action_input # Set final answer directly in state
else:
# Store the action request in history for tool_node
state["history"].append({
"type": "action_request",
"tool": action,
"input": action_input
})
print(f"DEBUG: Exiting reasoning_node. New history length: {len(state['history'])}")
return state
def tool_node(state: AgentState) -> AgentState:
# ... (previous code)
tool_call_dict = None
for msg in reversed(state["history"]):
if isinstance(msg, dict) and msg.get("type") == "action_request":
tool_call_dict = msg
break
if not tool_call_dict:
print("WARNING: No action_request found in history, skipping tool execution.")
return state # Or raise a more specific error if this truly shouldn't happen
tool_name = tool_call_dict.get("tool")
tool_input = tool_call_dict.get("input")
# --- ADD THIS DEBUG PRINT ---
print(f"DEBUG: tool_node received action_request: tool='{tool_name}', input='{tool_input[:100]}...'")
# --- END DEBUG PRINT ---
if not tool_name or tool_input is None: # tool_input can be empty string for some tools, but not None
print(f"ERROR: Invalid tool call in action_request. Tool name: '{tool_name}', Input: '{tool_input}'")
# Instead of raising directly, you might want to send this back to reasoning
# Or provide a specific error message as tool output
state["history"].append(AIMessage(content=f"[Tool Error] Invalid tool call: Tool name '{tool_name}' or input was empty. LLM needs to provide valid action."))
return state
# Look up and invoke the tool from the state's tool list
available_tools = state.get("tools", [])
tool_fn = next((t for t in available_tools if t.name == tool_name), None) # Assuming tools are LangChain Tool objects now
if tool_fn is None:
# Fallback for unrecognized tool - feedback to LLM
tool_output = f"[Tool Error] Tool '{tool_name}' not found or not available. Please choose from: {', '.join([t.name for t in available_tools])}"
print(f"ERROR: {tool_output}")
else:
try:
print(f"DEBUG: Invoking tool '{tool_name}' with input: '{tool_input[:100]}...'")
tool_output = tool_fn.run(tool_input) # Assuming tool.run() method for LangChain Tools
if not tool_output: # Handle empty tool output
tool_output = f"[{tool_name} output] No specific result found for '{tool_input}'. The tool might have returned an empty response."
except Exception as e:
tool_output = f"[Tool Error] An error occurred while running '{tool_name}': {str(e)}"
print(f"ERROR: {tool_output}")
# Add output to history as an AIMessage
# Ensure the history only contains HumanMessage and AIMessage objects for LangGraph's internal processing.
# The action_request dict can be removed or transformed if it's no longer needed for internal state.
# For now, we'll just add the tool output.
state["history"].append(AIMessage(content=f"[{tool_name} output]\n{tool_output}"))
print(f"DEBUG: Exiting tool_node. Tool output added to history. New history length: {len(state['history'])}")
return state
# ====== Agent Graph ======
def create_agent_workflow(tools: List[Any]): # tools are passed in now
workflow = StateGraph(AgentState)
# Define nodes
workflow.add_node("reason", reasoning_node)
workflow.add_node("action", tool_node)
# Set entry point
workflow.set_entry_point("reason")
# Define edges
workflow.add_conditional_edges(
"reason",
should_continue,
{
"action": "action", # Go to action node if a tool is requested
"reason": "reason", # Loop back to reason if more thinking is needed
"end": END # End if final answer detected
}
)
workflow.add_edge("action", "reason") # Always go back to reasoning after a tool action
# Compile the graph
app = workflow.compile()
# Pass tools into the state so nodes can access them.
# This is a bit of a hacky way to get them into the state, but works for now.
# A cleaner way might be to make `tool_node` receive tools as a closure or directly from agent init.
# For this example, we'll modify the initial state for each invocation.
return app
# ====== Agent Interface ======
class BasicAgent:
def __init__(self):
# Tools need to be LangChain Tool objects for name and description
from langchain.tools import Tool
self.tools = [
Tool(name="duckduckgo_search", func=duckduckgo_search, description="Performs a DuckDuckGo search for current events or general facts."),
Tool(name="wikipedia_search", func=wikipedia_search, description="Searches Wikipedia for encyclopedic information."),
Tool(name="arxiv_search", func=arxiv_search, description="Searches ArXiv for scientific preprints and papers."),
Tool(name="document_qa", func=document_qa, description="Answers questions based on the content of a given document file (PDF, DOCX, TXT). Requires 'attachment_path' and 'question' as input."),
Tool(name="python_execution", func=python_execution, description="Executes Python code in a sandboxed environment for complex calculations or data manipulation."),
Tool(name="VideoTranscriptionTool", func=VideoTranscriptionTool(), description="Transcribes and analyzes video content from a URL or ID. Use for any question involving video or audio.")
]
self.workflow = create_agent_workflow(self.tools) # Pass tools to workflow creator
def __call__(self, question: str) -> str:
print(f"\n--- Agent received question: {question[:50]}{'...' if len(question) > 50 else ''} ---")
# Initialize state with proper structure and pass tools
state = {
"question": question,
"context": {},
"reasoning": "",
"iterations": 0,
"history": [HumanMessage(content=question)],
"final_answer": None,
"current_task": "Understand the question and plan the next step.",
"current_thoughts": "",
"tools": self.tools # Pass tools into the state
}
# Invoke the workflow
final_state = self.workflow.invoke(state)
# Extract the FINAL ANSWER from history
if final_state.get("final_answer"):
answer = final_state["final_answer"]
print(f"--- Agent returning FINAL ANSWER: {answer} ---")
return answer
# Fallback if final_answer wasn't set correctly in state
for msg in reversed(final_state["history"]):
if isinstance(msg, AIMessage) and "FINAL ANSWER:" in msg.content:
answer = msg.content.split("FINAL ANSWER:")[1].strip()
print(f"--- Agent returning FINAL ANSWER (from history): {answer} ---")
return answer
print(f"--- ERROR: No FINAL ANSWER found in agent history for question: {question} ---")
raise ValueError("No FINAL ANSWER found in agent history.")
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |