File size: 17,883 Bytes
f18e2ca
cd40d80
330575e
4aa21d9
9f6f7ea
4aa21d9
 
 
 
 
 
 
 
 
 
 
b228ff5
c93c36d
28a1f20
 
 
4aa21d9
 
 
415844f
 
 
 
 
 
40de8fd
 
 
415844f
5b9bc91
 
 
 
 
b678e6b
 
5b9bc91
 
 
415844f
 
 
 
 
 
 
 
 
8777f65
 
415844f
 
 
 
 
 
 
 
 
 
e060a36
415844f
 
 
 
 
 
 
 
 
c93c36d
415844f
 
 
 
 
eaba916
415844f
 
 
 
 
 
 
 
 
 
eaba916
415844f
 
 
 
 
 
 
 
 
 
4aa21d9
1f27438
 
4aa21d9
415844f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8777f65
 
415844f
 
 
8777f65
415844f
 
 
 
 
 
 
 
 
 
 
40de8fd
770fff9
40de8fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
415844f
 
 
40de8fd
 
 
 
 
 
 
 
415844f
 
 
 
40de8fd
 
 
 
 
 
415844f
 
 
 
 
 
 
 
 
 
40de8fd
415844f
 
 
40de8fd
 
415844f
 
 
40de8fd
8777f65
415844f
 
 
 
 
 
 
 
 
 
 
 
 
8777f65
415844f
 
 
 
 
 
 
 
 
 
 
 
 
8777f65
415844f
 
 
 
 
 
 
 
 
 
 
 
 
 
8777f65
415844f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8777f65
415844f
 
 
8777f65
415844f
 
 
 
8777f65
415844f
14783cd
f18e2ca
415844f
 
 
 
 
 
 
 
 
f8fb884
3d99e57
f18e2ca
55ec576
 
5b9bc91
 
 
 
 
 
3d99e57
5b9bc91
55ec576
 
 
 
 
5b9bc91
3d99e57
 
55ec576
 
 
 
5b9bc91
 
 
9f6f7ea
28a1f20
b90251f
31243f4
 
 
 
7d65c66
b177367
3c4371f
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
b177367
31243f4
c33725f
31243f4
3c4371f
31243f4
b177367
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
3c4371f
 
31243f4
e80aab9
31243f4
 
3c4371f
 
7d65c66
3c4371f
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3c4371f
31243f4
 
 
 
 
 
 
7d65c66
 
 
31243f4
 
7d65c66
31243f4
 
3c4371f
31243f4
 
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
81917a3
e514fd7
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from smolagents import tool, Tool, CodeAgent, DuckDuckGoSearchTool, HfApiModel, VisitWebpageTool, SpeechToTextTool, FinalAnswerTool
from dotenv import load_dotenv
import heapq
from collections import Counter
import re
from io import BytesIO
from youtube_transcript_api import YouTubeTranscriptApi
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_community.document_loaders import ArxivLoader

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

#Load environment variables
load_dotenv()

from langgraph.graph import END, StateGraph
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain_core.tools import tool
from typing import Dict, List, TypedDict, Annotated
import operator
from langchain_community.llms import HuggingFaceHub
from langchain_community.chat_models import ChatHuggingFace


from langchain.schema import HumanMessage  # Or your framework's equivalent

def init_state(question: str):
    return {
        "question": question,
        "history": [HumanMessage(content=question)],
        "context": {}  # <- Add this line
    }


# ====== Tool Definitions ======
@tool
def duckduckgo_search(query: str) -> str:
    """Search web using DuckDuckGo. Returns top 3 results."""
    from duckduckgo_search import DDGS
    with DDGS() as ddgs:
        return "\n\n".join(
            f"Title: {res['title']}\nURL: {res['href']}\nSnippet: {res['body']}"
            for res in ddgs.text(query, max_results=3)
        )

@tool
def wikipedia_search(query: str) -> str:
    """Get Wikipedia summaries. Returns first 3 sentences."""
    import wikipedia
    try:
        return wikipedia.summary(query, sentences=3)
    except wikipedia.DisambiguationError as e:
        return f"Disambiguation options: {', '.join(e.options[:3])}"
    except wikipedia.PageError:
        return "Page not found"

@tool
def arxiv_search(query: str) -> str:
    """Search academic papers on arXiv. Returns top 3 results."""
    import arxiv
    results = arxiv.Search(
        query=query, 
        max_results=3,
        sort_by=arxiv.SortCriterion.Relevance
    ).results()
    
    return "\n\n".join(
        f"Title: {r.title}\nAuthors: {', '.join(a.name for a in r.authors)}\n"
        f"Published: {r.published.strftime('%Y-%m-%d')}\nSummary: {r.summary[:250]}..."
        for r in results
    )

@tool
def document_qa(input_str: str) -> str:
    """Answer questions from documents. Input format: 'document_text||question'"""
    from transformers import pipeline
    if '||' not in input_str:
        return "Invalid format. Use: 'document_text||question'"
    
    context, question = input_str.split('||', 1)
    qa_model = pipeline('question-answering', model='deepset/roberta-base-squad2')
    return qa_model(question=question, context=context)['answer']

@tool
def python_execution(code: str) -> str:
    """Execute Python code and return output."""
    try:
        # Create isolated environment
        env = {}
        exec(f"def __exec_fn__():\n    {indent_code(code)}\nresult = __exec_fn__()", env)
        return str(env.get('result', 'No output'))
    except Exception as e:
        return f"Error: {str(e)}"

def indent_code(code: str) -> str:
    return '\n    '.join(code.splitlines())

# ====== Agent State ======
class AgentState(TypedDict):
    question: str
    history: Annotated[List[Dict], operator.add]
    context: str
    reasoning: str
    iterations: int

# ====== Graph Components ======
def init_state(question: str) -> AgentState:
    return {
        "question": question,
        "history": [],
        "context": f"User question: {question}",
        "reasoning": "",
        "iterations": 0
    }

def should_continue(state: AgentState) -> str:
    """Determine if agent should continue or finish"""
    last_msg = state['history'][-1]
    
    # Stop conditions
    if state['iterations'] >= 5:
        return "end"
    if "FINAL ANSWER:" in last_msg.get('content', ''):
        return "end"
    if last_msg['role'] == 'tool':
        return "reason"
    return "continue"

def reasoning_node(state: AgentState) -> AgentState:
    """Agent reasoning and tool selection"""
    # Get Hugging Face API token from environment
    token = os.environ.get("HF_TOKEN")
    if not token:
        raise ValueError("Hugging Face API token not found in environment variables")
    
    # Create the underlying LLM model
    llm = HuggingFaceHub(
        repo_id="HuggingFaceH4/zephyr-7b-beta",
        huggingfacehub_api_token=token,
        model_kwargs={
            "temperature": 0.1,
            "max_new_tokens": 500
        }
    )
    
    # Wrap the LLM in ChatHuggingFace
    chat_model = ChatHuggingFace(llm=llm)
    
    # Build prompt
    prompt = ChatPromptTemplate.from_messages([
        ("system", (
            "You're an expert problem solver. Analyze the question, select the best tool, "
            "and provide reasoning. Available tools: duckduckgo_search, wikipedia_search, "
            "arxiv_search, document_qa, python_execution.\n\n"
            "Current Context:\n{context}\n\n"
            "Reasoning Steps:\n{reasoning}\n\n"
            "Response Format:\nReasoning: [Your analysis]\nAction: [Tool name OR 'Final Answer']\n"
            "Action Input: [Input for tool OR final response]"
        )),
        *state['history']
    ])
    
    chain = prompt | chat_model
    response = chain.invoke({
        "context": state['context'],
        "reasoning": state['reasoning'],
        "question": state['question']
    })
    
    # Parse response
    content = response.content
    reasoning, action, action_input = parse_agent_response(content)
    
    # Update state
    state['history'].append(AIMessage(content=content))
    state['reasoning'] += f"\nStep {state['iterations']+1}: {reasoning}"
    
    if "final answer" in action.lower():
        state['history'].append(AIMessage(content=f"FINAL ANSWER: {action_input}"))
    else:
        state['history'].append({
            "tool": action,
            "input": action_input,
            "role": "action_request"
        })
    
    return state
    

def tool_node(state: AgentState) -> AgentState:
    """Execute selected tool and update state"""
    last_action = state['history'][-1]
    tool_name = last_action['tool']
    tool_input = last_action['input']
    
    # Tool mapping
    tools = {
        "duckduckgo_search": duckduckgo_search,
        "wikipedia_search": wikipedia_search,
        "arxiv_search": arxiv_search,
        "document_qa": document_qa,
        "python_execution": python_execution
    }
    
    # Execute tool
    tool_result = tools[tool_name].invoke(tool_input)
    
    # Update state
    state['history'].append(ToolMessage(
        content=tool_result,
        tool_call_id=tool_name
    ))
    state['context'] = f"Tool Result ({tool_name}): {tool_result}"
    state['iterations'] += 1
    
    return state

def parse_agent_response(response: str) -> tuple:
    """Extract reasoning, action, and input from response"""
    reasoning = response.split("Reasoning:")[1].split("Action:")[0].strip()
    action_part = response.split("Action:")[1].strip()
    
    if "Action Input:" in action_part:
        action, action_input = action_part.split("Action Input:", 1)
        action = action.strip()
        action_input = action_input.strip()
    else:
        action = action_part
        action_input = ""
    
    return reasoning, action, action_input

# ====== Agent Graph ======
def create_agent_workflow():
    workflow = StateGraph(AgentState)
    
    # Define nodes
    workflow.add_node("reason", reasoning_node)
    workflow.add_node("action", tool_node)
    
    # Set entry point
    workflow.set_entry_point("reason")
    
    # Define edges
    workflow.add_conditional_edges(
        "reason",
        should_continue,
        {
            "continue": "action",
            "reason": "reason",
            "end": END
        }
    )
    
    workflow.add_edge("action", "reason")
    return workflow.compile()

# ====== Agent Interface ======
class BasicAgent:
    def __init__(self):
        self.workflow = create_agent_workflow()
        self.tools = [
            duckduckgo_search,
            wikipedia_search,
            arxiv_search,
            document_qa,
            python_execution
        ]
    


    def __call__(self, question: str) -> str:
        print(f"Agent received question: {question[:50]}{'...' if len(question) > 50 else ''}")
        
        # Ensure proper HumanMessage in history
        state = {
            "question": question,
            "history": [HumanMessage(content=question)]
        }
    
        final_state = self.workflow.invoke(state)
    
        print(f"Final state keys: {list(final_state.keys())}")
        if 'history' in final_state:
            print(f"History length: {len(final_state['history'])}")
            for i, msg in enumerate(final_state['history']):
                print(f"Message {i}: {type(msg).__name__} - {msg.content[:100]}...")
    
        for msg in reversed(final_state['history']):
            if isinstance(msg, AIMessage) and "FINAL ANSWER:" in msg.content:
                answer = msg.content.split("FINAL ANSWER:")[1].strip()
                print(f"Agent returning answer: {answer}")
                return answer
    
        raise ValueError("No FINAL ANSWER found in agent history.")

    


def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)